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Abstract 
Background: Antibiotics are often prescribed empirically to treat 
infection syndromes before causative bacteria and their susceptibility 
to antibiotics are identified. Guidelines on empiric antibiotic 
prescribing are key to effective treatment of infection syndromes, and 
need to be informed by likely bacterial aetiology and antibiotic 
resistance patterns. We aimed to create a clinically-relevant composite 
index of antibiotic resistance for common infection syndromes to 
inform recommendations at the national level. 
Methods: To create our index, we used open-access antimicrobial 
resistance (AMR) surveillance datasets, including the ECDC 
Surveillance Atlas, CDDEP ResistanceMap, WHO GLASS and the newly-
available Pfizer ATLAS dataset. We integrated these with data on 
aetiology of common infection syndromes, existing empiric 
prescribing guidelines, and pricing and availability of antibiotics. 
Results:  The ATLAS dataset covered many more bacterial species 
(287) and antibiotics (52) than other datasets (ranges = 8-11 and 16-32 
respectively), but had a similar number of samples per country per 
year. Using these data, we were able to make empiric prescribing 
recommendations for bloodstream infection, pneumonia and 
cellulitis/skin abscess in up to 44 countries. There was insufficient data 
to make national-level recommendations for the other six syndromes 
investigated. Results are presented in an interactive web app, where 
users can visualise underlying resistance proportions to first-line 
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empiric antibiotics for infection syndromes and countries of interest. 
Conclusions: We found that whilst the creation of a composite 
resistance index for empiric antibiotic therapy was technically feasible, 
the ATLAS dataset in its current form can only inform on a limited 
number of infection syndromes. Other open-access AMR surveillance 
datasets are largely limited to bloodstream infection specimens and 
cannot directly inform treatment of other syndromes. With improving 
availability of international AMR data and better understanding of 
infection aetiology, this approach may prove useful for informing 
empiric prescribing decisions in settings with limited local AMR 
surveillance data

Keywords 
Antimicrobial resistance, empiric therapy, guidelines, online tool, data 
linkage
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            Amendments from Version 1

This article has been updated in response to reviewer comments. 
Notably, the new Figure 3 illustrates the calculation behind our 
resistance index, and Figure 4 has been modified to better 
communicate our assumptions and decision-making process for 
deciding recommendations for treatment. Overall, our changes 
aimed to improve the clarity of our article, and expand the 
Discussion on our assumptions, the ATLAS dataset, and the 
implications of our results.

Any further responses from the reviewers can be found at the 
end of the article

REVISED

Introduction
Worldwide, most bacterial infections are treated empirically, mean-
ing that antibiotics are prescribed based on clinical judgement 
prior to the infectious agent and its susceptibilities to antibiotics  
determined by diagnostic tests1. A point prevalence survey of anti-
biotic-prescribing in children showed that globally over 75% of  
antibiotics in neonatal treatment were given empirically2. In 
low- and middle-income countries, the laboratory capacity that  
could inform appropriate empiric therapy choices is frequently 
lacking.

Empiric antibiotic prescribing guidelines contain recommen-
dations on what antibiotics to use for specific infection syn-
dromes. An infection syndrome is a clinical situation where the  
presence of a specific type of infection (e.g. pneumonia, urinary 
tract infection) is suspected. Such an infection syndrome might 
thus be caused by bacteria or a virus or other transmissible patho-
gens or even might be due to non-infectious inflammatory causes.  
Here we assume that a decision has already been made that antibi-
otics are required (i.e. there is a bacterial cause of the syndrome) 
and do not address the other key diagnostic issue of bacterial or 
viral agent. The use of prescribing guidelines has been associ-
ated with reductions in patient mortality3, particularly among 
the most critically ill patients4, though benefits vary by patient 
group and infection5. Guidelines have also been shown to reduce  
levels of inappropriate prescribing6, which leads to a reduction 
in the selective pressure for antimicrobial resistance (AMR).  
Empiric guidelines are important in low-income settings where 
microbiological confirmation rarely occurs due to infrastructural 
and resource constraints6,7.

Guidelines for empiric antibiotic therapies are often set at the 
national level. For example, in England, Public Health Eng-
land and the National Institute of Health and Care Excellence 
(NICE) produce national antimicrobial prescribing guidance8. 
Creation of such guidelines requires an understanding of both the  
aetiology (typical causative pathogens) and the prevalence of rel-
evant antibiotic susceptibilities. Each anatomic site of infection 
(e.g. respiratory tract, urinary tract, skin and soft tissue, gastroin-
testinal tract) has typical infecting microorganisms. The aetiology  
of some infection syndromes and associated antibiotic suscepti-
bilities varies by setting, age and even season (as is the case for 
pneumonia for example9, but some broad generalizations can  
be made, especially with the broad-spectrum nature of some anti-
biotic agents.

Though it is recommended that prescribing guidelines should be 
adapted by healthcare institutions to take into account local pat-
terns of AMR, in practice, this is infrequently performed10. This 
may be due to a lack of resources to develop appropriate guide-
lines or a lack of appreciation of the need11 – furthermore, the  
existence of guidelines is no guarantee that local prescribers will 
adhere to such recommendations. Providing readily available, 
easy-to-use, transparently created tools based on open-access 
international AMR surveillance data may help practitioners in 
resource-limited settings generate appropriately-tailored local 
prescribing guidelines.

Whilst antibiotic resistance levels and other clinical criteria 
form the basis for designing antibiotic prescribing guidelines, 
in practice, antibiotic use is also constrained by market factors,  
such as cost and access to antibiotics. This may be particularly 
true in the case of low- and middle-income countries, which can 
have limited healthcare budgets and access to medicines. Two anti-
biotic market factors which can be informed through open-access  
data are those of antibiotic supplier prices and antibiotic placement 
on the World Health Organization’s (WHO’s) Essential Medicines 
List12.

Currently, antibiotic resistance surveillance tools typically present 
resistance data for individual bacteria-antibiotic (“bug-drug”) 
combinations13. We use a more clinically-oriented presentation 
of resistance proportions at the level of infection syndromes,  
which could be used to inform empiric antibiotic prescribing 
recommendations. Similar “indices” have been previously pro-
posed14. The Drug Resistance Index was developed to quantify 
resistance to multiple antibiotics for individual bacterial species13  
and communicate to policymakers and non-experts the com-
bined impact resistance has on the antibiotics available for treat-
ment, without directly supporting clinical care. A similar index, 
but used to assess the population-level appropriateness of empiric  
treatment regimens for complicated UTI in the Netherlands was 
also explored by Ciccolini et al.7 where the relative frequency of 
causative agents and frequency of resistance was combined with 
antibiotic usage data. A study in a Canadian intensive care unit  
explored the likely efficacy of empiric treatment for three 
device-associated infections by creating a composite syndrome 
level resistance15. A “basket” of bacterial agents causing each  
infection was used similarly to how economists measure the aver-
age price of a standard basket of consumer goods weighted by the 
relative importance of each good16. There are also the weighted 
incidence syndromic combination antibiograms, which aim to  
inform empiric prescribing by considering the local weighted 
incidence of causative pathogens for an infection syndrome17.  
Thus there are several examples of empiric therapy indices, 
however, they are either setting and/or syndrome specific, and 
do not present other potentially important information such as  
measures of drug access and/or cost information alongside clinical 
data.

We test the feasibility and robustness of creating a syndrome-
level composite resistance index from open-access data sources,  
including international AMR surveillance datasets, and devel-
oped a user-friendly web-based application, the AR.IA App18, that 
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brings together all this information. The app does not aim to be a  
predictor for likelihood of viral versus bacterial infections, but 
rather to aid antibiotic prescribing choice where the infectious 
agent is presumed to be bacterial. This work was undertaken  
as part of the Wellcome Data Re-use Prize19, motivated by the 
release of a new open-access dataset (ATLAS) from Pfizer that  
contained 633,820 bacterial clinical isolates collected from  
77 countries over a 14-year period19.

Methods
This work consists of three main objectives, where specific  
methods applied:

1.    To compare antibiotic resistance proportions calculated 
using the ATLAS dataset with those estimated from  
other global AMR surveillance datasets.

2.    To integrate data on antibiotic susceptibilities from the 
ATLAS dataset with the aetiology of infection syn-
dromes to derive a syndrome-level composite resistance  
index; and combine such data with access to and cost of 
antibiotics.

3.    To develop an interactive web app (AR.IA App) to 
access the above information and offer empiric therapy  
recommendations based on available data.

All of the above was conducted in R software20, using the follow-
ing packages: shiny 1.2.021, ggplot2 3.1.022, dplyr 0.7.823, rworld-
map 1.3-124, RColorBrewer 1.0-525, reshape2 1.4.226, DT 0.527,  
magrittr 1.0.128, fuzzyjoin 0.1.429. These are available at: https://
cran.r-project.org/.

Surveillance data comparison
The ATLAS dataset (available for download at https://amr.the-
odi.org/programmes/atlas) is an open-access dataset on human 
AMR surveillance data generated by the commercial pharma-
ceutical company Pfizer that contains granular antibiotic suscep-
tibility data, including ‘raw’ minimum inhibitory concentration  
(MIC) data, for 633,820 bacterial clinical isolates collected from 
77 countries and spanning 14 years30. This dataset also contains 
information on the gender and age group (age groups are: 0–2,  
3–12, 13–18, 19–64, 65–84 and 85+) of the patients isolates were 
collected from. It also contains the specimen clinical source, 
indicating the anatomical site isolates were sampled from (e.g.  
skin, blood, nose, etc.). The ATLAS dataset was made pub-
licly viewable in 2017, and downloadable in 2018 as part of the  
Wellcome Data Reuse Prize19. This was an initiative to encour-
age reuse of AMR data shared by industry and to facilitate the  
development of common methodological and metadata standards. 

We additionally used the European Centre for Disease Preven-
tion and Control (ECDC) Surveillance Atlas31, ResistanceMap 
by the Center for Disease Dynamics Economics and Policy  
(CDDEP)32 and the Global Antimicrobial Resistance Surveil-
lance System (GLASS) database by the World Health Organiza-
tion (WHO)33. The first holds AMR data collected in European  
countries whilst the second and third hold global data from  
national AMR surveillance programmes. ResistanceMap and 

GLASS both include all of the ECDC dataset, since they use it as 
a source for their European sepsis data. Data between 2004 and 
2017 were considered to match the ATLAS time coverage, but 
only from 2017 for the GLASS dataset (the only year available for  
download at the time of our analysis). Missing susceptibility 
labels (i.e. “resistant”, “intermediate” or “susceptible”) in the 
ATLAS dataset (443,899/633,820) were assigned from available 
MIC data for other isolates within the ATLAS dataset. We did not  
use any external data on breakpoints to derive susceptibility 
labels for MICs which were not labelled elsewhere within the  
ATLAS dataset (see Further Methods in Extended Data for 
details)34.

We estimated the “agreement” of the ATLAS dataset as the per-
centage of resistance proportions for all bug-drug combina-
tions with point estimates falling within the corresponding 95%  
confidence intervals in the ECDC Surveillance Atlas and Resist-
anceMap databases (see Further Methods in Extended Data for 
details)34. Sample sizes (i.e. number of samples per country per 
year in each dataset, where one sample is one combination of bac-
teria and antibiotic) were compared using boxplots. We matched  
susceptibility labels across datasets by assigning all isolates  
as “resistant” if they were non-susceptible (i.e. “intermediate”  
or “resistant”).

Data integration and Mapping
Figure 1 shows the steps required to extract and integrate  
information from sources other than the ATLAS dataset to pro-
duce our composite resistance index. We focused on nine infec-
tion syndromes. Each infection syndrome was mapped to the 
corresponding causative bacteria (i.e. aetiology, informed by the 
scientific literature), antibiotics used to treat them empirically  
(informed by antibiotic prescribing guidelines and clinical  
consultation) and related specimen sources (informed by the 
ATLAS metadata and clinical consultation).

(a) Common infection syndromes. We first chose which infec-
tion syndromes to focus on. A comprehensive list of infection 
syndromes was extracted from NICE guideline8. We discarded  
syndromes predominantly caused by viral and fungal infections 
and kept the nine most common bacterial ones. Clinically, these  
syndromes are all identifiable with simple clinical examination  
and/or basic investigations, and occur worldwide.

(b) Mapping isolate source to infection syndrome. We linked 
isolates in the ATLAS dataset to the infection syndrome they 
most likely originated from informed by the clinical “source”  
description in the ATLAS metadata. Due to the diversity of sources, 
we kept sample types represented by at least 1,000 isolates.  
We discarded sample types not clearly linked to an infection  
syndrome (e.g. “wound”), as these samples might not necessar-
ily represent infecting organisms, but rather colonizing bacterial  
flora.

(c) Antibiotics used to treat empirically infection syndromes. 
We extracted which antibiotics are used to treat empirically  
each of the nine infection syndromes from the NICE guidelines8 
and then took a simplified set as advised by clinical consultation.  
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Figure 1. Flowchart of data analysis and inputs for this project. Orange boxes indicate different datasets from which information was 
extracted. Dark blue boxes represent the initial and subset ATLAS dataset used to inform levels of resistance (light blue box) to standard 
empiric therapy. Solid arrows joining boxes indicate mapping between data types. Dashed arrows are used to indicate the sources data 
were extracted from. The direction of the arrows indicate the order data types were extracted and integrated.

These empiric therapies represent typical current practice  
in the UK, though we attempted to make use of agents that 
were widely available at low cost internationally. For simplicity,  
we did not incorporate additional patient-level prescribing cri-
teria (such as penicillin allergy status and pregnancy) when  
choosing these antibiotics, hence the need for clinical consultation 
alongside the complex NICE guidelines.

(d) Contributing pathogen distribution: syndrome aetiology. 
To establish the distribution of causative pathogens for each 
infection syndrome, we identified reviews on the global aetiol-
ogy for different syndromes and, if we could not find any, per-
formed a rapid literature search for recent publications. Rapid,  
informal reviews were done by three of the authors (NRN, 
QJL, GMK). Individual syndromes were investigated by each 
author and searches of the syndrome plus terms like “aetiology” 
were performed in PubMed and Google in January 2019. Based  
on the literature found, the percentage of each infection syn-
drome caused by a bacterial agent were extracted from each study  
into a prespecified Excel data extraction sheet. One author (GMK) 
then integrated all of these results, per syndrome, creating a  
suggested pathogen distribution for each syndrome. Even where 
non-bacterial (i.e. viral or fungal) pathogens were found to  
be causative of the syndrome in the literature, only the proportion  
of the relevant bacterial pathogens were used in this distribution.

(e) Combining antibiotic susceptibility data from four AMR 
surveillance datasets. We extracted the antibiotic susceptibil-
ity data from the ATLAS dataset as well as from three more  
AMR surveillance datasets: ECDC, ResistanceMap and GLASS, 

to allow the end-user of our AR.IA App to select the underlying 
antibiotic susceptibility data.

(f) Combining with drug information datasets. We extracted 
data on supplied cost (and cost unit) for antibiotics from the 
Management Sciences for Health (MSH) International Medical 
Products Price Guide35 which we inflated to the 2017 level using  
World Bank inflation data36. We also included whether a recom-
mended drug was on the WHO Essential Medicines List (EML) 
and on the AWaRE classification system, which builds on the  
EML to advise on what antibiotics to use for common infections 
(“access” category), for a small number of infections (“watch”  
category) and to be considered as last-resort options (“reserve”  
category)37 (Figure 2).

(g) Mapping data to recommendations for therapy. We multi-
plied the frequency of each syndrome’s contributing bacteria by 
their resistance proportion to calculate a composite resistance  
index for empirically used antibiotics. An example of a made-
up syndrome caused by two bacterial species can be seen in  
Figure 3. In this example, the composite resistance to the first-
line antibiotic A is 7%, and since this is less than the default  
15% cut-off, first-line treatment A would still be recommended. 

Each infection syndrome was assumed to be caused entirely by 
bacterial species, based on the scope of our work. We noted that  
not all bacterial species were included in the ATLAS database, 
nor were all species tested for the antibiotics included in empiric  
therapies. We thus define the “causative pathogen availability” 
as the proportion of isolates from available species out of all  
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Figure 2. Flowchart of data linkage for further data. Orange boxes indicate additional datasets, blue boxes indicate ATLAS data and green 
boxes indicate resulting data utilised within this project.

Figure 3. Example of calculation of the composite resistance index. We designed a simple hierarchical decision workflow (Figure 4) to 
inform on the appropriateness of using first-line empiric antibiotic therapy by comparing the syndrome-level composite resistance index 
calculated for each country against the chosen resistance cut-off, defined as the resistance proportion above which to escalate therapy, 
which is set to 15% by default in the AR.IA App.

syndrome-contributing species. For example, if 20% of the syn-
drome cases are due to bacteria X, 80% due to bacteria Y, but bacteria  
Y is not in the ATLAS database then the “causative pathogen 
availability” is 20%. We further looked at susceptibility cover-
age – not all species were tested for resistance to all drugs. Thus 
if only 50% of bacteria X had only be tested for resistance to all 
empiric therapies the coverage would only be 10% in this example.  
The composite resistance index is then calculated using the 
resistance proportions of available causative pathogens, assum-
ing missing bacteria to be totally susceptible, which may bias  
towards using first line therapies. We report the causative patho-
gen availability, as well as whether fewer than 10 isolates  

were available in the final recommendation table, but do not  
set a minimum threshold.

The AR.IA App creation
The Shiny R package21 was used to build an interactive web app 
(referred to as ‘the AR.IA App’) that hosts data from all four 
AMR surveillance datasets, integrated with external information, 
and the main output data used to recommend what antibiotics  
are appropriate to treat common infection syndromes in dif-
ferent regions of the world. Key parameters can be edited by  
the user including the underlying antibiotic susceptibility sur-
veillance dataset used, the syndrome aetiology (proportion due 
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to each included bacterial species) and the resistance cut-off for 
changing empiric therapy, which is set by default to 15% (see  
Usage of the AR.IA App in Extended Data for details)38. The  
underlying data manipulation and Shiny R code can be found  
on GitHub.

Results
Surveillance data comparison
We used four open-access datasets: ATLAS30, ECDC31,  
ResistanceMap32 and GLASS33 (Table 1).

Assigning susceptibility labels from MIC values in the ATLAS 
dataset reduced the number of isolates with incomplete records by 
63% (to 164,918 isolates). The number of isolates per country and 

year was similar across datasets (Extended data, Supplementary 
Figures 2 & 3 in Further Results)39 . The ATLAS dataset reports  
many more bacterial species and antibiotics tested than any 
other dataset (Table 1), resulting in smaller sample sizes for 
each country/year/species/antibiotic combination. The “agree-
ment” of the ATLAS dataset by year as compared to the ECDC or  
ResistanceMap datasets ranged from 5–30% (Extended data, 
Supplementary Figure 1A in Further Results)39. This agree-
ment increases as the ATLAS sample size increases, suggesting 
that the low agreement is driven in part by small samples sizes,  
but stays around 25% after sample size exceeds 30,000 (Extended 
data, Supplementary Figure 1B in Further Results), pointing  
to differences in sampling as the main cause of the low  
agreement39.

Figure 4. Description of decision-making process for deciding recommendations for treatment.  If there is no data to inform therapy, 
we assume that the bacteria are susceptible and recommend the therapy, with a disclaimer that we have no data to inform. Note here that 
resistance is at the level of the syndrome. The “...” indicate where the decision making would continue onto third and higher-level therapy 
options.
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Table 1. Descriptors of surveillance datasets.

Database ATLAS ECDC ResistanceMap GLASS

Created by Pfizer ECDC CCDEP WHO

Year utilised in AR.IA App 2017 2017 2015 2017

Types of samples All clinical 
samples

Blood (majority) and 
cerebrospinal fluid

Blood (majority) and 
cerebrospinal fluid

Blood, urine, 
genital 
and stool

Geographical area covered Global Europe Global* Global*

Number of countries covered 77 30 92 69

Bacterial species covered 287 8 11 8

Antibiotics tested 52 16 20 32

Sample size 1,689,267 1,299,941 1,288,325 1,683,765

*with ECDC data for European blood samples

Data integration and mapping
(a) Common infection syndromes. The nine chosen infection 
syndromes are shown in Table 2. These were chosen as they  
could be clearly linked to anatomic site or sample types, are com-
mon infections worldwide, and are caused by common bacterial 
species.

(b) Mapping isolate source to infection syndrome. We could 
map 366,001/633,820 isolates (58%) from the ATLAS dataset to 
the syndrome they likely originated from (Table 2). The major 
sources excluded were “INT: Wound” (n=96,306 isolates) and  
“Respiratory: Trachea” (n=19,278) as they could not be linked 
to a single syndrome and could represent colonizing flora. There 
was no accompanying clinical information available to help dis-
criminate genuine infecting organisms from colonizers. The isolate  
“source” information was not sufficient to assign respiratory 
specimens (Table 2) to either community or hospital acquired  
pneumonia, thus we used the same pool of respiratory isolates  
for both syndromes, but with a different etiological make-up.

(c) Antibiotics used to treat infection syndromes empirically. 
The antibiotics used to treat the nine infection syndromes empiri-
cally are shown in Table 2 (Extended data, second line and  
third line presented in Supplementary Table 1 in Further Results)39. 
Some of the antibiotics recommended for treatment were not 
tested against in the ATLAS dataset and thus we mapped them  
to their equivalent tested antibiotic where possible (Extended  
data, Supplementary Table 2 in Further Results)39.

(d) Contributing pathogen distribution: syndrome aetiology. 
Except for bacterial meningitis, we could not find a consensus 
global aetiology for each infection syndrome. There are liable 
to be some regional differences in the aetiology of infections 
and also greater difficulty in obtaining reliable microbiological  
diagnosis in some parts of the world. We therefore relied on 
rapid literature reviews to find an approximate breakdown of 
the top bacterial species commonly isolated from each type of 
infection (see Further Results in Extended Data for details)39.  

However, the AR.IA App allows the bacterial aetiology to be 
changed by the user. Our syndrome aetiology from the literature 
included a total of 19 bacterial species. Of these, two were not  
present in the ATLAS dataset, including “Streptococcus, viri-
dans group” and Neisseria gonorrhoeae, the latter responsible  
for the majority of purulent urethritis/cervicitis cases. We  
therefore excluded the latter syndrome from the AR.IA App.

(e) Combining antibiotic susceptibility data from four AMR 
surveillance datasets. We aggregated antibiotic susceptibil-
ity data across the four AMR datasets (ATLAS, ECDC, Resist-
anceMap and GLASS) by keeping isolates from the most recent 
year available (2017) for all except ResistanceMap, which 
had very few data points for 2016 and 2017 (n=46 and n=197, 
respectively) and so we used 2015 instead (n=684); by standard-
izing the spelling of antibiotics, species and countries; and by  
mapping single antibiotics in the ATLAS dataset to their cor-
responding antibiotic classes (reported in the rest of datasets). 
When combining the datasets, we average the resistance propor-
tions reported in each dataset for each combination of country,  
bacteria and antibiotic class. We mapped each isolate source to  
their relevant infection syndrome as done for the ATLAS 
dataset. Datasets included isolates from different infection  
syndromes (Table 1).

(f) Combining with drug information datasets. Approxi-
mately 75% of the antibiotics tested in the ATLAS database 
and used to treat the chosen syndromes were found on the 2015 
EML list and over 80% in the AWaRE classification system (see  
Further Results in Extended Data for details)39. Only one 
of these antibiotics (fosfomycin) is classified on the AWaRe 
“reserve” group. As cost comparisons are difficult across different  
antibiotics that have different formulations, we allow the AR.IA 
App user to see exactly which formulation the available costs  
relate to by presenting the cost in “per specified unit”.

Summary of data integration and sub-setting. Following steps 
(a) - (f) above, we kept isolates in the ATLAS dataset that met 
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Table 2. Isolate, syndrome and antibiotic mapping results.

Infection Syndrome Isolate source in ATLAS Number 
of 
isolates in 
ATLAS

Total number 
of 
isolates in 
ATLAS

First Line

First Drug Second Drug

Bloodstream infection CVS: Blood 104,148 104,148 Amoxicillin Gentamicin

Urinary tract infection GU: Urine 82,086 84,689 Trimethoprim -

GU: Urinary Bladder 2,603

Pneumonia Respiratory: Sputum 81,669 122,291 Co-amoxiclav 
(Hospital-
acquired) 
 
Amoxicillin 
(Community- 
acquired)

- 
 
 
Clarithromycin 
(Community-acquired)

Respiratory: Bronchials 25,032

Respiratory: 
Bronchoalveolar lavage

8,335

Respiratory: Other 4,412

Respiratory: Lungs 2,843

Cellulitis / skin 
abscess

INT: Abscess 15,904 33,374 Flucloxacillin -

INT: Skin 7,257

INT: Skin Ulcer 5,674

INT: Cellulitis/Erysipelas 2,501

INT: Burn 2,038

Purulent urethritis / 
cervicitis

Genital/Urinary (GU) 1,416 2,613 Ceftriaxone -

GU: Urethra 1,197

Upper respiratory 
tract infection

HEENT: Ears 5,127 15,785 Penicillin V -

HEENT: Throat 3,725

HEENT: Nose 3,197

Respiratory: Sinuses 2,415

HEENT: Other 1,321

Bacterial meningitis Bodily Fluids: CSF 1,811 1,811 Penicillin Gentamicin

Septic arthritis Bodily Fluids: Synovial 1,290 1,290 Oxacillin -

the following criteria: were isolated from sources that could be 
mapped to infection syndromes (Table 2), belong to the list of  
bacterial species causing infection syndromes (Table 3), had 
assigned susceptibility status (susceptible/resistant) to at least  
one of the antibiotics used to treat infection syndromes, and  
were collected in 2017.

Applying these criteria resulted in a subset of 435,557 (69%) 
isolates from the ATLAS dataset that could be used to inform 
empiric guidelines. When grouped by country, species, syndrome 
and antibiotic, this resulted in 16,596 data points we could use  
in the AR.IA App. These data points represent resistance levels 
to individual antibiotics in our empiric guidelines in species iso-
lated from a syndrome source in a single country. This subset of  
ATLAS isolates came from 46 countries only (Figure 5A), out 
of an original 73, limiting the number of countries we could  
generate recommendations for.

(g) Resulting recommendations on the appropriateness of 
empiric antibiotic therapies. Recommendations existed for at 
least one of our nine syndromes for all 46 countries in the merged 
dataset. On average, each syndrome had recommendations for  
32 countries ranging from 14 countries for bacterial meningi-
tis to 44 countries for bloodstream infection (Table 3). Most  
of these countries were in Europe, the Americas and Asia, and 
only two in Africa (South Africa and Morocco) (Figure 5A). This  
reflects the underlying availability of isolates in the ATLAS  
dataset.

First-line antibiotics were recommended if the composite resist-
ance index for the infection syndrome was lower than the default 
resistance cut-off (15%). This cut-off was chosen because this 
represented a resistance level recently used for a local change 
in empirical antibiotic use for treatment of suspected severe  
infection. It is expected that users might want to use different 
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Table 3. Summary table of the recommendations for therapy. Causative pathogen availability: the average proportion (over all 
countries) of syndrome causing bacterial species which had susceptibility information available from the dataset. We only include 
recommendations for syndromes with a causative pathogen availability of at least 0.5. If the composite resistance index is above 15% 
for an antibiotic, therapy is escalated to the next line.

Syndrome Mean causative 
pathogen 
availability (S.D.)

Recommendation (as displayed in 
the app)

Number 
of 
countries

Therapy Key driver

Bloodstream 
infection

0.70 (0.14) Use second line, as resistance 
to first (but no data on 
resistance to second)

2 Cefuroxime and 
Gentamicin

S. aureus 
resistance

Consider alternatives! 
Resistance to all 
recommended therapies seen

42

Community 
acquired 
pneumonia

0.83 (0.18) Use first line, but no data to 
inform – consider second or 
third if data

7 Amoxicillin and 
Clarithromycin

S. pneumoniae 
resistance

Use second line, as resistance 
to first (but no data on 
resistance to second)

1 Co-Amoxiclav and 
Clarithromycin

Use second line 10 Co-Amoxiclav and 
Clarithromycin

Use third line (if exists) 24 Levofloxacin

Consider alternatives! 
Resistance to all 
recommended therapies seen

3

Hospital acquired 
pneumonia

0.74 (0.16) Use first line 2 Co-Amoxiclav S. aureus and 
P. aeruginosa 
resistanceConsider alternatives! 

Resistance to all 
recommended therapies seen

43

Cellulitis / skin 
abscess

0.55 (0.20) Use first line 30 Flucloxacillin S. aureus 
resistance

Use first line, but no data to 
inform – consider second or 
third if data

6 Flucloxacillin

Use second line 2 Clindamycin

Bacterial 
meningitis

0.51 (0.32) Use first line, but no data to 
inform – consider second or 
third if data

10 Penicillin and 
Gentamicin

*

Use second line, as resistance 
to first (but no data on 
resistance to second)

4 Ceftriaxone and 
Gentamicin

Septic arthritis 0.57 (0.09) Use first line but no data to 
inform – consider second or 
third if data

15 Oxacillin *

S.D., standard deviation.

*There were little data to establish key drivers.

thresholds for different syndromes, taking into account the trade-
off between syndrome severity and other factors including cost 
and future promotion of antibiotic resistance. If susceptibility  
data to first line antibiotics was not available, we recommended 
first line therapy but clarified this as “Use first line, but no data to  
inform - consider second or third if data”.

Most syndromes had a mean causative pathogen availabil-
ity, across all countries and antibiotics, of above 50% (Table 3),  

except for complicated urinary tract infection (UTI) (2%) and 
upper respiratory tract infection (32.5%)

Empiric therapy recommendations by syndrome derived from 
the ATLAS dataset are given in Table 3, which lists the recom-
mendations for syndromes with a mean causative pathogen 
availability of at least 50%. However, the recommendations for  
bacterial meningitis and septic arthritis rely on our assump-
tion to treat missing susceptibility information as indicating full  
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Figure 5. Map of ATLAS data. (A) Countries in red are represented in the subset of the ATLAS dataset used in our analysis. (B) Map of first 
line therapy proportion. Colours represent the proportion of syndromes for that country that we recommended to use first line therapy. Those 
in grey had no data for all syndromes.

susceptibility, as indicated by the “no data” mention. Therefore,  
we consider here that we cannot give robust recommendations  
for these two syndromes. 

We found that 42/44 countries had resistance to all recommended 
therapies for the treatment of bloodstream infection. This was 
driven by high levels of amoxicillin (first-line therapy) resist-
ance in Staphylococcus aureus (assumed to cause 25% of blood-
stream infection cases). In total, 48% of S. aureus bloodstream  
infection isolates in the ATLAS database were resistant to oxacil-
lin and hence phenotypically MRSA, which are also resistant to 
cefuroxime (the 2nd line agent). The high levels of resistance to 
first-line antibiotics seen in hospital-acquired pneumonia were  
driven by high proportions of beta-lactam resistance (cefuroxime 
in this therapy) in S. aureus and P. aeruginosa contributing 35% 
and 28% to this syndrome, respectively. A similar pattern was  

seen in community-acquired pneumonia, in this case driven 
by Streptococcus pneumoniae resistance to amoxicillin. For  
cellulitis/skin abscess the opposite was true, with the major-
ity (>75%) of countries being recommended to use the first line  
antibiotic (flucloxacillin).

E. coli causes around 70% of complicated UTI but this species 
was not commonly tested for trimethoprim susceptibility in the 
ATLAS dataset, which resulted in a mean causative pathogen  
availability of only 2% across all countries. Low causative patho-
gen availability for complicated UTI and respiratory tract infec-
tion meant that recommendations could not be strongly supported  
for these syndromes.

In summary, we could make recommendations for a limited 
number of infection syndromes using the ATLAS dataset: only 

Page 11 of 44

Wellcome Open Research 2020, 4:140 Last updated: 23 MAR 2022



for bloodstream infection, pneumonia and cellulitis/skin abscess. 
Our algorithm frequently recommended use of last-resort  
therapies due to high levels of resistance in S. aureus and Pseu-
domonas aeruginosa. This contrasts with the lower antibi-
otic resistance rates derived from ResistanceMap, ECDC and  
GLASS datasets, which suggests that there may be systematic  
differences in the way these datasets were generated.

Most of our final recommendations included therapies that were 
in the WHO Essential Medicines List and none were on the 
AWaRE reserve list. This means that theoretically most of the  
recommended antibiotics should be available on the market, even in 
resource constrained settings.

The AR.IA App
The AR.IA App (available here: https://gwenknight.shin-
yapps.io/empiric_prescribing/)18 presents the underlying data 
and recommendations described above. User instructions on  
how to use the App are presented in the section AR.IA App Docu-
mentation in Extended Data38. The AR.IA App allows the user to 
choose and combine multiple AMR surveillance datasets when 
calculating the syndrome-level composite resistance index. It 
allows the user to change multiple parameters, including syn-
drome type, resistance cut-off and aetiology. Recommending a 
change in antibiotic prescribing is a binary decision based on the 
resistance cut-off, users can change this cut-off to explore changes  
is antibiotic recommendations when the composite resistance 
level is close to the resistance cut-off. It can produce visual  
aids like the maps showed above (see Figure 4B, showing a  
global map of the proportion of syndromes for each available  
country for which we still recommended to use first-line therapy).

Discussion
We aimed to determine whether open-access AMR surveillance 
datasets, such as the newly available ATLAS dataset, could be 
used to inform on the appropriateness of empiric antibiotic ther-
apies to treat common infection syndromes. We integrated data  
on which antibiotics are commonly prescribed as empiric ther-
apy, the bacterial aetiology of each syndrome and the antibiotic 
susceptibilities of syndrome-contributing bacteria to produce a  
syndrome-level composite resistance index. We presented our 
results on an interactive web app, the AR.IA App18, to allow users 
to explore the impact of resistance proportions on prescribing  
decisions. Our code is available in an open-access format and 
broken down into discrete sections that can be re-used and modi-
fied by any user. To our knowledge, this is the first time that  
antibiotic resistance estimates have been compared between 
multiple global AMR surveillance datasets and linked to the 
MSH International prices dataset to present a coalition of 
resistance, proxy cost and proxy access indicators.

Despite the variety of antibiotics tested, clinical sources, bacte-
rial species and countries represented in the ATLAS dataset, we 
often found there were not enough isolates—from syndrome-
causing bacteria, syndrome-relevant sources and tested for the 
antibiotic of interest—to calculate composite resistance indices  

for most syndromes. As a result, we could only derive coun-
try-level recommendations for relatively few infections (blood-
stream infection, pneumonia and cellulitis/skin abscess). We also  
noted what appeared to be an over-representation of antibi-
otic-resistant isolates in the ATLAS dataset, as compared to the 
ECDC and ResistanceMap datasets. While other surveillance 
datasets typically only include data on the first isolate per patient,  
mostly from blood and cerebrospinal fluid, the sampling meth-
ods for the ATLAS dataset are unclear to us. Our results suggest 
there may have been a sampling bias in the ATLAS dataset to test 
for non-susceptible isolates or particular types of infections with 
higher proportions of resistance. We are therefore more likely  
to observe resistance to first-line therapies in the ATLAS data-
set, which leads to more frequent recommendation of last-line 
therapies. This is likely to be a common issue in AMR data  
generated from convenience sampling of clinical databases 
in settings with limited access to microbiology services. The  
ideal situation would be universal or representative sampling 
from all patients with suspected infection. Finally, the relatively 
low agreement values between ATLAS and the other AMR sur-
veillance highlight the need for critical appraisal before using  
ATLAS to inform empiric prescribing in its current form. Nev-
ertheless, to the best of our knowledge, the ATLAS dataset will 
remain freely accessible, and will be updated every 6 to 8 months,  
which could improve its usefulness to inform empiric prescrib-
ing in the future. An added improvement to the dataset would be 
the conversion of MIC values to sensitive/resistant classifications  
(e.g. using EUCAST guidelines) – currently there are measure-
ments without classifications. We did not perform this decision  
making here, in part due to conflicting thresholds in different  
guidelines and due to the fact that many of the antibiotics with 
missing classifications are not used for empirical guidelines (e.g.  
colistin), but this would increase the data available for future  
analyses.

Our analysis has several limitations. We only included a limited 
set of infection syndromes and hence used only part of all avail-
able ATLAS entries. Future work should include other syn-
dromes, such as purulent urethritis (typically caused by Neisseria  
gonorrhoeae), and sub-classify broad syndromes into narrower 
types of infections. The aim of this work is to inform prescrib-
ing after a decision, based on clinical examination, has been  
made as to the site and type of infection (i.e. the syndrome). 
Apart from bloodstream infections, which do often co-exist with  
other syndromes, our assumption that syndromes were inde-
pendent is likely to hold but in practice few of the infection 
syndromes have entirely reliable identification. This simplifica-
tion of syndromes is a limitation of our work but also of empiric 
prescribing in general.

Syndrome aetiology was informed only by basic literature 
reviews and will need to be supported by in-depth systematic 
reviews and account for regional, seasonal and host population 
differences. At this stage, we allow AR.IA App users to change  
the aetiological distributions. The choice of antibiotics used as 
empiric therapies could also be inputted by the user. The level  
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of recommendations (i.e. country-level) was dictated by the 
type of sampling available from global AMR surveillance data-
sets. Increased granularity will be needed to tailor antibiotic 
prescribing guidelines to local settings (e.g. hospital-level).  
Alternatively, resistance data could be pooled across multiple 
neighbouring countries with sparse availability of resistance  
information.

An important assumption we make is that bacteria with missing 
antibiotic susceptibility information are considered to be fully 
susceptible to that antibiotic. If we were to reverse this assump-
tion, and consider that bacteria with missing information are  
fully resistant, this would push our recommendations towards 
second or third line therapy, or even to the conclusion that none 
of the therapies would be effective. As we provide the value  
of our resistance index for all levels of therapy in the AR.IA 
App regardless of our final recommendation, users can them-
selves choose to interpret missing values (indicated by “NA”) as  
being a synonym of resistance rather than susceptibility, and  
escalate therapy to the next line.

AMR surveillance datasets do not report the susceptibilities 
of antibiotics that bacteria are commonly sensitive or intrinsi-
cally resistant to. For example, Pseudomonas aeruginosa is 
intrinsically resistant to many beta-lactam antibiotics and thus it  
is never tested against these agents. AMR surveillance datasets 
will need to systematically incorporate these rules. Datasets other 
than ATLAS reported susceptibility to antibiotic classes (e.g.  
cephalosporins), instead of that to individual drugs (e.g. ceftriax-
one), which was not helpful for empiric therapy design as resist-
ance is not always common to all antibiotics belonging to the same 
class. Relatively low isolate numbers for some countries restricted 
the potential usefulness of the datasets, and this factor also  
forced us to rely on potentially outdated numbers from previous 
years (up to 2015 for ResistanceMap). Additionally, the data pre-
sented in these surveillance datasets focus on hospital-associated 
infections, which limits their relevance for community-associated 
infections. Given these limitations, these AMR surveillance  
datasets may not be the most reliable source of AMR propor-
tions to base empirical treatment on. Identifying such an “opti-
mum arrangement for recording and reporting of AMR data” is  
indeed one of the objectives of the UK Five-Year Antimicro-
bial Resistance Strategy40. This includes using point prevalence  
surveys as the gold standard (as opposed to convenience sam-
pling of isolates from clinical specimens that may be biased  
towards resistant strains) to estimate the total burden of  
AMR, determine the aetiology of common infection syndromes  
and ultimately inform empiric antibiotic guidelines.

This work focuses on improving guidelines for empiric treat-
ment of infection, but there are limitations to the usefulness of 
this approach41. Firstly, individual patients identified by labo-
ratory investigation to have antibiotic-susceptible infections  
can still be effectively treated with agents that show extensive 
resistance proportions at the population level. Secondly, empiric 
guidelines typically favour the use of broad-spectrum antibi-
otics to achieve the highest chance of treatment success, but  
this may not always be in the individual or population’s best 

overall interest in terms of minimizing side-effects (such as 
Clostridium difficile infection) or conserving effectiveness of 
treatments. Thirdly, some drugs with low-levels of resistance but 
multiple other sub-optimal properties (such as vancomycin) may 
be recommended in later lines of empiric therapy at high levels 
of resistance. And fourthly, the assumption is made that infec-
tion syndromes are caused entirely by bacterial pathogens requir-
ing antibiotic treatment, when in reality many infections are  
caused by viruses42 and would recover without needing antibi-
otics. Whilst future advances on rapid and cheap point-of-care  
diagnostics for AMR bacteria might remove the need for empiric 
therapy, these will continue to widely be used in many settings, 
especially in low-income countries.

Future iterations of this app should include user defined thera-
pies as well as the option to upload local resistance data. We also 
had a binary resistance cut-off. This means that, for example,  
if the cut-off is set to 15% (and resistance to first line antibiot-
ics is 16%), even if resistance to second-line antibiotics is 14%  
they will still be recommended. For now, users who suspect this 
may be an issue can alter this cut-off and see its effects on the  
recommendations (for example switch to 14% manually and 
see if there is a change in recommendation). Future iterations  
should include a range around the cut-off which would  
produce suitable warnings. 

Conclusion
We have shown how independent sources of data can be com-
bined with AMR surveillance information, such as the ATLAS 
dataset, to add clinical and policy-making value. Our results  
suggest that whilst the creation of a composite resistance index 
is technically feasible, the data needed to make robust prescrib-
ing recommendations for most infectious syndromes is cur-
rently lacking. In line with a move towards more evidence-based  
antibiotic prescribing, we believe this approach could be used 
to monitor the effectiveness of antibiotic empiric therapies,  
the cornerstone of current antibiotic prescribing practices. Such  
an approach can be applied to more robust data as these  
become available.

Data availability
Underlying data
Table 4 contains the underlying data used in this study;  
Table 5 contains these data compiled for use in the AR.IA App.

Extended data
Figshare: AR.IA paper Extended Data - Further Methods.  
https://doi.org/10.6084/m9.figshare.9852029.v234.

This project contains further information on the manipulation of 
the ATLAS dataset, the comparison of the ATLAS dataset with  
ECDC Surveillance Atlas and ResistanceMap, the creation of 
our drug-resistance index, and details on other drug information  
datasets used in our analysis.

Figshare: AR.IA paper Extended Data - Further Results.  
https://doi.org/10.6084/m9.figshare.9852041.v239.
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Table 4. Source of the underlying data used in this study.

Title Use Reference

ATLAS Source of 
laboratory data

https://atlas-surveillance.com/#/login and https://amr.theodi.org/programmes/atlas

ECDC Surveillance 
Atlas

Used in 
comparison of 
datasets

Dataset provided by ECDC based on data provided by WHO and Ministries of Health from 
the affected countries: https://ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-
disease-data/data-ecdc

ResistanceMap Used in 
comparison of 
datasets

The Center for Disease Dynamics Economics and Policy. ResistanceMap: Antibiotic 
Resistance. 2018. https://resistancemap.cddep.org/AntibioticResistance.php. Date accessed: 
February 13, 2019.

GLASS Used in 
comparison of 
datasets

Dataset provided by the World Health Organization. https://www.who.int/glass/en/

MSH International 
Products Price 
Guide

Price of drug and 
placement on 
WHO Essential 
Medicines list

Management Sciences for Health. The International Medical Products Price Guide (2015 
Edition) (2016).

World Bank CPI Inflation of drug 
costs

The World Bank. Inflation, consumer prices (annual %). (2019) https://data.worldbank.org/
indicator/FP.CPI.TOTL.ZG [Accessed 20/02/2019]

AWaRe Placement on 
AWaRe list

Sharland, M., Pulcini, C., Harbarth, S., Zeng, M., Gandra, S., Mathur, S. and Magrini, N. 
Classifying antibiotics in the WHO Essential Medicines List for optimal use—be AWaRe. 
The Lancet Infectious Diseases, 18(1), pp.18–20. (2018). http://apps.who.int/medicinedocs/
documents/s23413en/s23413en.pdf

NICE guidelines Empiric antibiotic 
therapies

The National Institute for Health and Care Excellence (NICE) and Public Health England (PHE). 
Summary of antimicrobial prescribing guidance - managing common infections. 1–23 (2019): 
https://www.nice.org.uk/Media/Default/About/what-we-do/NICE-guidance/

Table 5. Data from Table 4 compiled for use in the final running of the AR.IA App.

Title DOI Use Reference

AR.IA App all 
datasets

https://doi.org/10.6084/m9.figshare.9821996 Data from the ATLAS dataset, 
the ECDC Surveillance Atlas, 
ResistanceMap, and GLASS 
aggregated by species 
and drugs of interest in our 
analysis

43

AR.IA App drug 
breakdown

https://doi.org/10.6084/m9.figshare.9822077 Baseline empiric therapy 
recommendations

44

AR.IA App drug 
breakdown 
(groups)

https://doi.org/10.6084/m9.figshare.9822104 Baseline empiric therapy 
recommendations with drug 
groupings 
instead of individual drugs

45

AR.IA App species 
breakdown

https://doi.org/10.6084/m9.figshare.9822179 Baseline contributing bacteria 
distributions

46

AR.IA App all 
species

https://doi.org/10.6084/m9.figshare.9822146 List of species to include 47

AR.IA App 
economic data

https://doi.org/10.6084/m9.figshare.9822122 Cost, WHO EML and AWaRe 48

This project contains further information on the compari-
son of the ATLAS dataset with ECDC Surveillance Atlas and 

ResistanceMap, the antibiotics used in our analysis, the summary 
of our review for the aetiology of the infection syndromes, the 
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process to combine the antimicrobial resistance datasets, and to  
combine the drug information datasets. Also contained are  
Supplementary Figures 1–3, and Supplementary Tables 1–6.

Figshare: AR.IA paper Extended Data - AR.IA App  
documentation. https://doi.org/10.6084/m9.figshare.9852056.v238.

This project contains instructions regarding the usage of the  
App developed as part of this project. Also contained is  
Supplementary Figure 4.

Extended data are available under the terms of the Creative  
Commons Attribution 4.0 International license (CC-BY 4.0).

Software availability
The AR.IA App is available at: https://gwenknight.shinyapps. 
io/empiric_prescribing/.

Source code available from: https://github.com/gwenknight/ 
empiricprescribing.

Archived source code at time of publication: https://doi.org/ 
10.5281/zenodo.341899818.

Licence: GNU General Public License v3.0.
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Table 3: Some of the recommendations here seem incompatible with Figure 3. e.g the first 6. 
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Page 9, paragraph 2. Should make it clear that the cut-off of 15% can be changed in the app.7. 
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your comments in bold and italics below, while our answers are written in plain text.
Page 4, paragraph 2. “Concordance” would be a better word than “accuracy 
here” as there is no gold standard surveillance system. “Accuracy” is also used 
elsewhere in the manuscript.

1. 

Thank you for this suggestion. In light of other reviewer comments, we have decided to 
replace “accuracy” by “agreement” throughout the manuscript. We hope that this is a 
satisfactory change.

Figure 1. Can the caption explain what the direction of the arrows indicates?1. 
We have now clarified in the caption that the arrows linking the boxes indicate the process 
of integrating the different open-access datasets together to generate our index to inform 
empiric therapy. In addition, following suggestions from other reviewers, we have modified 
the figure to include two types of arrows to improve readability.

Page 5 “…which is set to 15% by default”. What is the reason for choosing 15%? 
Perhaps this point could be considered in the discussion. Surely it would make 
sense to choose different cut-offs for different syndromes as the trade-off 
between impact on patient outcomes and future selection for resistance will be 
different.  

1. 

Such a cut-off is always going to be a somewhat arbitrary choice – we used 15% as this value 
had recently been used in the clinical practice for a similar question for one of us. In other 
situations, we have found that other cut-off values have been used – for example 25% for 
treatment of pneumonia in one recommendation from USA (see reference in text). We 
agree that different cut-offs would probably selected in different circumstances by different 
users for different syndromes – hence the value of having a slider for this parameter in the 
app. However, in the main text, for simplicity we chose to use just one value (15%).

Page 5 “missing isolates”. I don’t think I understand why the term “missing 
isolates” is used. Were the isolates missing or were the records just incomplete?

1. 

Thank you for spotting this; we have corrected this phrase to indicate that the isolates were 
indeed not missing, but had incomplete records (MIC values were missing the 
corresponding susceptibility labels).

Figure 3: I don’t completely understand the logic of this. If there are no data on 
the first line therapy wouldn’t it make sense to make no recommendation but to 
collect more data, rather than immediately going on and recommend the 
second line therapy.

1. 

Thank you for highlighting this – there was a mistake in this figure in that we do currently 
recommend first line therapy if there is no data. In the app recommendations, where 
relevant data is missing, we have:

"Use second line, as resistance to first (but no data on resistance to second)"○

"Use third line, as resistance to both first and second (but no data on resistance to 
third)"

○

"Use first line, but no data to inform - consider second or third if data"○

Where there is resistant to the lower rank therapy, then we recommend use of the next 
level – “Use second line” in this app is purely because there is resistance to first line. Figure 3 
has now been updated to better reflect the logic we use in our recommendations, and 
highlight that we assume bacteria are susceptible if there are no data to inform on potential 
resistance. 
The aim of our work was to see what recommendations could be made at the empiric 
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prescribing level by deriving a syndrome-level index. Therefore, we are interested in the 
immediate decision a prescriber would make solely based on this index. You are correct 
when saying that ideally, more data would have to be collected before making any decision. 
However, we assume that we are in a situation where a patient requires immediate 
antibiotic treatment, so we report what the app recommends given this set of data. In line 
with comments from another reviewer we have included more discussion to highlight our 
focus on this secondary part of the empiric prescribing process. 
               

Table 3: Some of the recommendations here seem incompatible with Figure 3. 
e.g the first row for bacteraemia recommends using second line, but says no 
data on resistance to second line, while in the flow chart (Fig 3) the second line 
can only be recommended if resistance level is below the cut-off. Similar issues 
for septic arthritis. It would also be useful to have some indication of the 
strength of the evidence for the recommendation in the table. 

1. 

Thank you for spotting this; as discussed in response to your comment 5), there was an 
error in Figure 3, which has now been corrected. As for an indication of the strength of the 
evidence, we have not mentioned this in Table 3 as it would vary between countries, but in 
the AR.IA App we now indicate the number of isolates used to generate the 
recommendation as a measure of strength of evidence. 

Page 9, paragraph 2. Should make it clear that the cut-off of 15% can be changed 
in the app.

1. 

Thank you for highlighting this. We did already mention that the cut-off could be changed in 
the app in the “Methods, The AR:IA App creation” section, however we have added another 
phrase in the paragraph you mentioned to hopefully make it clearer that we were referring 
to the 15% cut-off.  
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General comments 
I would like to congratulate the authors with this original, comprehensive article. It describes the 
development of a freely available app to provide an evidence base for syndrome- and country-
specifc empirical prescribing. The resistance data is derived from four different datasets, including 
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one commercial dataset, ATLAS, and three public datasets, EARS-Net, ResistanceMap and GLASS. 
This research was carried out as part of the Wellcome Data Re-use Prize, promoting the use of 
pharmaceutical AMR data. 
 
While it is an interesting tool, part of the objective of this study was to look at the applicability of 
ATLAS data. The authors mention that the resistance proportions reported by ATLAS are higher 
than those reported by the other datasets. I would have liked to know more about the ATLAS 
database in order to understand these differences and avoid misuse in the future. For example, 
the type of samples collected (colonization, infection, community, hospital), the sampling strategy 
(first isolate per species, per patient, all isolates or only those with susceptibility results for last-
resort antibiotics, i.e. with confirmed resistance to first-line antibiotics), method of antimicrobial 
susceptibility testing (central, local, automated, applied breakpoints etc.) etc. 
Based on the discrepancies they found between ATLAS and the public datasets, I think the app 
should have a warning indicating that the reported data are not necessarily representative, and 
mainly based on samples from the hospital setting. This should also be emphasized in the 
conclusion of the abstract and article. 
The app could also have been further improved by indicating the number of isolates that the 
advice was based on per country so users can appreciate the validity of the data for their setting. 
  
Detailed comments 
 
Abstract 
The introduction lacks a clear objective, which seems to be included in the Methods section “ to 
derive .. syndromes” . I suggest to move this to the introduction and make the objective PICO. 
The Methods section could explicitly mention the other datasets, and provide a bit more detail of 
what was done. 
In the Results section, I would like to see some explicit results, like the number of isolates and 
countries that were available to inform the system. The specific syndromes that could be selected, 
etc. 
In the conclusions, “rates of AMR” is used I think “AMR proportions” is more correct. 
  
Introduction 
In paragraph 4, it is described that “Providing .. guidelines based on open acces international AMR 
surveillance data may help practitioners”. I think what is meant is providing a tool, not guidelines 
to help inform empirical prescribing. 
 
In the last paragraph it is mentioned that “We propose a more clinically-oriented presentation of 
resistance rates” and “we designed a syndrome-level composite resistance index”. This suggests 
that this is a novel idea of the authors, but as described in the discussion such a kind of index has 
already been proposed by multiple others. If I understood correctly, the Weighted Incidence 
Syndromic Combination is exactly the same.1 I suggest to move the paragraph about these indices 
from the discussion to the introduction, and make it clear that this is not a novel concept, but that 
this concept is now taken further by developing an easy-to-use tool informed by publicly 
available resistance data. 
  
Methods 
Surveillance data comparison 
It is stated that “The ATLAS dataset .. contains high-quality AST data”. However, it is not explained 
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why it is considered “high-quality”. Please elaborate. 
 
Could you add an address where the ATLAS data can be found for interested researchers? 
 
Please report about the sample selection procedure for all datasets, as this heavily influences 
resistance proportions. For the surveillance systems it is commonly the first isolate per sample 
type per patient per year, and as they focus on blood samples all are clinical samples, mainly from 
the hospital setting. It would be important to have the same information for the ATLAS dataset. 
 
The type of variables reported to ATLAS would be informative as well. In the app you can select 
age groups, for example, but availability of this data has never been discussed in the paper. 
 
Please add the type and year of publication of the breakpoints that were applied to MIC data with 
missing S/I/R interpretation. 
 
In the fifth paragraph, “resistance rates” are often referred to, this should be “resistance 
proportions”. 
 
Here it is also stated that “ ECDC and ResistanceMap .. derive from the same source data”. I think it 
is more correct to state that ResistanceMap includes all ECDC data, and uses other sources for 
AMR data from other continents. Moreover, the same can be explained for GLASS, all European 
sepsis data is derived from ECDC data. 
 
“Accuracy” might not be the best term, perhaps “agreement” is more clear. 
 
Step c) Why was additional clinical consultation needed, and how were the NICE guidelines and 
the clinical consultation integrated? 
 
Step g) I think “syndrome coverage” can be explained a bit more clearly. Perhaps another term 
should be used, like “causative pathogen availability”. 
 
Step g) If data is missing full susceptibility is assumed. This is a strong assumption, which would 
have warranted a sensitivity analysis for a best-case worst-case scenario, which could even have 
been incorporated in the app. 
  
Results 
In table 1, and supplementary figures 2 and 3, please report the number of countries included in 
each dataset. 
 
In table 1, I would also like to see the total number of isolates per dataset, and the overlap in 
countries between datasets clearly displayed. 
 
Figure 1. I think the file names can be removed. “Other datasets” could be replaced by the real 
names, including ATLAS. 
 
Figure 3. The arrow from “Are there data on first-line therapy - No”, results in second line therapy 
being suggested (if data is available). This does not seem to be in line with what is discussed in 
step g) where missing data is assumed “fully susceptible” please align. 
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Figure 4. I would not give the same (grey) colour to countries that had no data, or had no 
syndrome for which first-line therapy was recommended. These are two, very distinctive 
categories. 
 
Surveillance data comparison 
The “accuracy” here is shockingly low, it would have been interesting to see whether certain 
specific bug-drug combinations were responsible for the difference in AMR proportions, and how 
large the differences in AMR proportions were. The proportion of overlap by itself is not very 
informative. 
 
Step e)  
How does it work if the datasets are combined? Are all isolates just aggregated without any 
weighting? And if you switch between only showing ATLAS data, or showing data from 2 or more 
datasets including ATLAS are ATLAS data then transformed to class resistance versus single 
antibiotic resistance when only ATLAS is selected? Please clarify. 
 
How much overlap was there between the datasets in country coverage? It would have been nice 
to have maps indicating country participation for the different datasets. 
 
While you mention that you could only provide recommendations for bacteremia, pneumonia and 
cellulitis, in the app and table 3, meningitis and arthritis are still included? 
 
App 
I think a line should be included explaining that the included AMR proportions are from hospital-
associated infections. And a warning should be included that the data may not be representative 
of the national prevalence of AMR due to selective sampling (mainly tertiary care hospital data, 
selection of isolates with full AST data, i.e. the more resistant ones, etc.). 
 
The tool could have been even more useful if uploading of local resistance data was made easy. 
The possibility to export country-specific data could be helpful too. If this is easy to add, I would 
like to ask the authors to add this functionality, if it is a lot of work this would not be required. 
 
The cut-off for selecting first or second line antibiotics is binary which means that second line 
therapeutics could be advised even if resistance proportions only differ 1% point. Could it 
somehow be incorporated that only above a clinically relevant difference in resistance the advice 
would switch from first to second line antibiotics? As above, if this is easy to add, I would like to 
ask the authors to add this functionality, if it is a lot of work this would not be required. Then, I 
would like to see this remark added to the paper. 
  
Discussion 
In the limitations section, it should be discussed that these data may not be the most reliable 
source of AMR proportions to base empirical treatment on, especially since for certain countries 
the number of isolates included are very low and not very up-to-date (2017). 
It should also be mentioned that the provided data focus on hospital-associated infections (and 
tertiary care centres) and do not apply to community-associated infections. 
Finally, there should be a warning against the future use of ATLAS data without critical appraisal; 
there is very low “accuracy”, and too little information about the sampling scheme and its 
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representativeness. On certain websites (https://www.amrindustryalliance.org/case-
study/antimicrobial-testing-leadership-and-surveillance-atlas/) they claim that ”ATLAS is the only 
database of its kind capable of providing such a broad scope of reliable, readily available 
information in an easy to use platform” which is “crucial for clinicians and public health officials”, 
which could have important implications. 
Please also report about the future prospects of ATLAS data, and whether this database will 
remain available and/or will be updated with new data? 
 
References 
1. Randhawa V, Sarwar S, Walker S, Elligsen M, et al.: Weighted-incidence syndromic combination 
antibiograms to guide empiric treatment of critical care infections: a retrospective cohort study.
Crit Care. 2014; 18 (3): R112 PubMed Abstract | Publisher Full Text  
 
Is the work clearly and accurately presented and does it cite the current literature?
Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Partly

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: I am an epidemiologist working in the field of antimicrobial resistance, and I 
have ample experience with AMR surveillance data.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 19 Jun 2020
Quentin Leclerc, London School of Hygiene & Tropical Medicine, London, UK 

I would like to congratulate the authors with this original, comprehensive article. It 
describes the development of a freely available app to provide an evidence base for 
syndrome- and country-specifc empirical prescribing. The resistance data is derived from 
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four different datasets, including one commercial dataset, ATLAS, and three public 
datasets, EARS-Net, ResistanceMap and GLASS. This research was carried out as part of the 
Wellcome Data Re-use Prize, promoting the use of pharmaceutical AMR data. 
 
Many thanks for your comments. We have left your comments in bold and italics below, 
while our answers are written in plain text. 
 
While it is an interesting tool, part of the objective of this study was to look at the 
applicability of ATLAS data. The authors mention that the resistance proportions reported 
by ATLAS are higher than those reported by the other datasets. I would have liked to know 
more about the ATLAS database in order to understand these differences and avoid misuse 
in the future. For example, the type of samples collected (colonization, infection, 
community, hospital), the sampling strategy (first isolate per species, per patient, all 
isolates or only those with susceptibility results for last-resort antibiotics, i.e. with 
confirmed resistance to first-line antibiotics), method of antimicrobial susceptibility 
testing (central, local, automated, applied breakpoints etc.) etc. 
Based on the discrepancies they found between ATLAS and the public datasets, I think the 
app should have a warning indicating that the reported data are not necessarily 
representative, and mainly based on samples from the hospital setting. This should also be 
emphasized in the conclusion of the abstract and article. 
 
We agree that we are relying on a database where the collection methods are unclear but 
believe it to be a convenience sample of isolates taken from hospital surveillance systems 
with a bias towards sampling from longer and more complex infections, that are proving 
harder to treat. We believe this to be the case for most AMR databases with isolate samples 
including the WHO GLASS surveillance. We need better surveillance with pro-active 
sampling including of those infections that are not complex and do respond to treatment to 
understand syndrome aetiology and to get a handle on the overall burden of AMR. 
We found it difficult to add more to our abstract and believe that highlighting the use of 
ATLAS there then allows readers to move to understanding further what ATLAS is within the 
paper. We have added further discussion in the discussion section to what we believe the 
samples in ATLAS and the wider AMR datasets represent. 
 
The app could also have been further improved by indicating the number of isolates that 
the advice was based on per country so users can appreciate the validity of the data for 
their setting. 
We thank the reviewer for this suggestion – we now report the number of isolates in the 
Therapy Recommendations tab in the app. 
  
Detailed comments 
 
Abstract 
The introduction lacks a clear objective, which seems to be included in the Methods section 
“ to derive .. syndromes” . I suggest to move this to the introduction and make the 
objective PICO. 
The Methods section could explicitly mention the other datasets, and provide a bit more 
detail of what was done. 
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In the Results section, I would like to see some explicit results, like the number of isolates 
and countries that were available to inform the system. The specific syndromes that could 
be selected, etc. 
Thank you for these suggestions to improve the Abstract. We have tried to incorporate as 
much of the requested information as possible, while respecting the 300 words limit. 
 
In the conclusions, “rates of AMR” is used I think “AMR proportions” is more correct. 
We have now made the recommended change from “rates” to “proportions”. 
  
Introduction 
In paragraph 4, it is described that “Providing .. guidelines based on open access 
international AMR surveillance data may help practitioners”. I think what is meant is 
providing a tool, not guidelines to help inform empirical prescribing. 
Thank you for spotting this mistake, we have now corrected it since we indeed meant “tool” 
here. 
 
In the last paragraph it is mentioned that “We propose a more clinically-oriented 
presentation of resistance rates” and “we designed a syndrome-level composite resistance 
index”. This suggests that this is a novel idea of the authors, but as described in the 
discussion such a kind of index has already been proposed by multiple others. If I 
understood correctly, the Weighted Incidence Syndromic Combination is exactly the same.1  
I suggest to move the paragraph about these indices from the discussion to the 
introduction, and make it clear that this is not a novel concept, but that this concept is now 
taken further by developing an easy-to-use tool informed by publicly available resistance 
data. 
Thank you for this suggestion. We have moved this discussion paragraph to the 
penultimate paragraph of the introduction. We have clarified in the last paragraph of the 
introduction that the novelty of our framework comes from using open-access datasets and 
presenting the results in an online tool. 
  
Methods 
Surveillance data comparison 
It is stated that “The ATLAS dataset .. contains high-quality AST data”. However, it is not 
explained why it is considered “high-quality”. Please elaborate. 
Many thanks for this comment, we have clarified this by changing the wording of this 
sentence. 
 
Could you add an address where the ATLAS data can be found for interested researchers? 
The link to the official ATLAS website (https://atlas-surveillance.com) is already provided as a 
hyperlink when clicking on “ATLAS dataset” at the beginning of the Methods section. 
However, we have now added a second link (https://amr.theodi.org/programmes/atlas) to 
facilitate download of the ATLAS dataset. These links are also present in Table 4 in the “Data 
availability” section. 
 
Please report about the sample selection procedure for all datasets, as this heavily 
influences resistance proportions. For the surveillance systems it is commonly the first 
isolate per sample type per patient per year, and as they focus on blood samples all are 
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clinical samples, mainly from the hospital setting. It would be important to have the same 
information for the ATLAS dataset. 
The types of samples for each dataset are presented in Table 1. We have also added a 
sentence discussing this difference in sampling between AMR surveillance datasets in the 
second paragraph of the Discussion section. 
 
The type of variables reported to ATLAS would be informative as well. In the app you can 
select age groups, for example, but availability of this data has never been discussed in the 
paper. 
Thank you for pointing this out; we have now added two sentences highlighting that the 
ATLAS dataset also contains information on gender, age and specimen source in the second 
paragraph of the Methods section. 
 
Please add the type and year of publication of the breakpoints that were applied to MIC 
data with missing S/I/R interpretation. 
We did not apply external data on breakpoints to the MIC data with missing S/I/R 
interpretation. Rather, we chose to look for other isolates within the ATLAS dataset of the 
same bacterial species and MIC which had a susceptibility label, and applied the same label 
to the isolates which only had the raw MIC values (for details, please refer to our Further 
Methods in Extended Data). 
To make this clearer to the reader, we have modified the last sentence of the 2nd paragraph 
of the Methods – Surveillance data comparison section to: 
“Missing susceptibility labels (i.e. “resistant”, “intermediate” or “susceptible”) in the ATLAS 
dataset (443,899/633,820) were assigned from available MIC data for other isolates within 
the ATLAS dataset. We did not use any external data on breakpoints to derive susceptibility 
labels for MICs which were not labelled elsewhere within the ATLAS dataset (see Further 
Methods in Extended Data for details).” 
In addition, we have added a sentence after the third paragraph of our Further Methods to 
elaborate on our decision to not use external breakpoints data. 
 
In the fifth paragraph, “resistance rates” are often referred to, this should be “resistance 
proportions”. 
Thank you for this suggestion, we have now replaced “resistance rates” by “resistance 
proportions” throughout the manuscript. 
 
Here it is also stated that “ ECDC and ResistanceMap .. derive from the same source data”. I 
think it is more correct to state that ResistanceMap includes all ECDC data, and uses other 
sources for AMR data from other continents. Moreover, the same can be explained for 
GLASS, all European sepsis data is derived from ECDC data. 
We have now added a sentence in paragraph 4 to state that ECDC data is included in 
ResistanceMap and GLASS. 
 
“Accuracy” might not be the best term, perhaps “agreement” is more clear. 
Thank you for this suggestion, we have now replaced “accuracy” by “agreement” throughout 
the manuscript. 
 
Step c) Why was additional clinical consultation needed, and how were the NICE guidelines 
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and the clinical consultation integrated? 
In this first iteration of the app. we needed to decide upon a simple set of empiric antibiotic 
guidelines with one choice for each infection syndrome, ignoring for now the complexities 
of pregnancy, age and allergies. For this we took the NICE guidelines as a starting point and 
then used clinical consultation to give the most commonly used antibiotic treatment. For 
this we relied on our clinical author’s (AA) experience and overview of what happens in 
several UK Trusts. We have modified the paragraph to reflect this and hope in future 
iterations to allow for user input to avoid this reliance on one possible therapy. 
 
Step g) I think “syndrome coverage” can be explained a bit more clearly. Perhaps another 
term should be used, like “causative pathogen availability”. 
Thank you for this suggestion, we have replaced “syndrome coverage” by “causative 
pathogen availability” throughout the manuscript. 
 
Step g) If data is missing full susceptibility is assumed. This is a strong assumption, which 
would have warranted a sensitivity analysis for a best-case worst-case scenario, which 
could even have been incorporated in the app. 
We agree that this is a strong assumption. The consequence of this reverse assumption 
would be to push therapies towards second or third line, or even to the recommendation 
“Consider alternatives! Resistance to all recommended therapies seen”. To better highlight 
this, and make sure that the reader understands this assumption and the consequence of 
reversing it, we have added a paragraph on this topic in the section about limitations in the 
Discussion, and reworked Figure 4 to clearly show this assumption in the decision-making 
process. 
 
Results 
In table 1, and supplementary figures 2 and 3, please report the number of countries 
included in each dataset. 
We have now added this information in Table 1. However, we have not added this to 
Supplementary Figures 2 and 3 as we believe this would make the Figures harder to read 
(as the number of countries in each dataset each year can change, and we would therefore 
need to add a number for every year). 
 
In table 1, I would also like to see the total number of isolates per dataset, and the overlap 
in countries between datasets clearly displayed. 
We have now added a footnote in Table 1 to indicate that ResistanceMap and GLASS use 
ECDC data for their European blood samples, as well as the total sample size per dataset. 
Please note that this sample size corresponds to the total number of unique bacteria and 
drug measurements made, rather than number of isolates (i.e. number of lines) in the 
ATLAS dataset. This is the definition we also use when comparing sample size in our Further 
Results, to align with the measures provided in other surveillance datasets. We have 
clarified this in the Surveillance data comparison section in Methods. 
 
Figure 1. I think the file names can be removed. “Other datasets” could be replaced by the 
real names, including ATLAS. 
This has now been adapted in the Figure to match the suggestions given. 
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Figure 3. The arrow from “Are there data on first-line therapy - No”, results in second line 
therapy being suggested (if data is available). This does not seem to be in line with what is 
discussed in step g) where missing data is assumed “fully susceptible” please align. 
Thank you for spotting this mistake. Figure 3 has now been updated to better reflect the 
logic used the app, and the fact that we assume missing data is “fully susceptible”. 
 
Figure 4. I would not give the same (grey) colour to countries that had no data, or had no 
syndrome for which first-line therapy was recommended. These are two, very distinctive 
categories. 
Apologies, this was an error in the figure and accompanying legend. Grey now only 
represents countries that had no data. The colour scheme has been updated to better align 
with other figures, countries with no syndrome for which first-line therapy was 
recommended would now be in dark red. 
 
Surveillance data comparison 
The “accuracy” here is shockingly low, it would have been interesting to see whether 
certain specific bug-drug combinations were responsible for the difference in AMR 
proportions, and how large the differences in AMR proportions were. The proportion of 
overlap by itself is not very informative. 
We have now also changed the phrasing of accuracy to agreement in line with previous 
reviewer suggestions. We agree that such a question would be worth investigating, 
however we feel that such an in-depth comparison would stand as an entirely different 
piece of work from our own analysis here, beyond the scope of this paper. 
 
Step e) 
How does it work if the datasets are combined? Are all isolates just aggregated without 
any weighting? And if you switch between only showing ATLAS data, or showing data from 
2 or more datasets including ATLAS are ATLAS data then transformed to class resistance 
versus single antibiotic resistance when only ATLAS is selected? Please clarify. 
We have indicated in step e) that we aggregated data across multiple datasets “by mapping 
antibiotics in the ATLAS dataset to their corresponding antibiotic classes (reported in the 
rest of datasets)”. We have clarified that we are mapping “single” antibiotics. When 
combining the datasets, we average the resistance rates reported in each dataset for each 
combination of country, bacteria and antibiotic class; we have now clarified this in the main 
text to incorporate this comment’s suggestion. 
 
How much overlap was there between the datasets in country coverage? It would have 
been nice to have maps indicating country participation for the different datasets. 
Thank you for this suggestion. We have decided not to include a new Figure, as we feel that 
this would lengthen the paper without directly relating to our research question. We now 
clearly state that there is geographical overlap in Table 1 by saying that ECDC data underlies 
the European data in ResistanceMap and GLASS, and we already stated the general 
geographical coverage of the datasets in that Table (Europe or Global). 
 
While you mention that you could only provide recommendations for bacteremia, 
pneumonia and cellulitis, in the app and table 3, meningitis and arthritis are still included? 
The only recommendations we can provide for meningitis and arthritis come with the 
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caveat that there is actually no data to inform bacterial susceptibility, and therefore rely on 
our assumption to consider lack of data equivalent to full susceptibility. This is stated in 
Table 3. As a consequence, we consider that we cannot give robust recommendations for 
these two syndromes. We have added a couple of sentences in the “Resulting 
recommendations on the appropriateness of empiric antibiotic therapies” section of the 
Results to highlight this. 
 
App 
I think a line should be included explaining that the included AMR proportions are from 
hospital-associated infections. And a warning should be included that the data may not be 
representative of the national prevalence of AMR due to selective sampling (mainly tertiary 
care hospital data, selection of isolates with full AST data, i.e. the more resistant ones, 
etc.). 
We have now added the following disclaimer line in the app: “Resistance prevalence 
reported here may not be representative of the national prevalence. This tool is for research 
use only. Do not use for clinical decision making.” 
 
The tool could have been even more useful if uploading of local resistance data was made 
easy. The possibility to export country-specific data could be helpful too. If this is easy to 
add, I would like to ask the authors to add this functionality, if it is a lot of work this would 
not be required. 
We agree that it would be a nice feature to add to the app. Unfortunately, this would be 
complicated to add in practice, therefore we have not considered it at this stage, but 
something that we are looking into for future work. 
 
The cut-off for selecting first or second line antibiotics is binary which means that second 
line therapeutics could be advised even if resistance proportions only differ 1% point. 
Could it somehow be incorporated that only above a clinically relevant difference in 
resistance the advice would switch from first to second line antibiotics? As above, if this is 
easy to add, I would like to ask the authors to add this functionality, if it is a lot of work 
this would not be required. Then, I would like to see this remark added to the paper. 
We agree that including subtleties around the levels of resistance and how this affects 
treatment choice would be great additions to this app, but we have decided not to include 
them in this iteration due to the level of work involved and the small likelihood that this 
happens frequently. As the user can alter the 15% cut-off this can be used to explore 
sensitivity and resistance levels. We have added a new section into the discussion about 
future iterations of the app and how this could be included. 
  
Discussion 
In the limitations section, it should be discussed that these data may not be the most 
reliable source of AMR proportions to base empirical treatment on, especially since for 
certain countries the number of isolates included are very low and not very up-to-date 
(2017). 
We now mention this in the fifth paragraph of the discussion. 
 
It should also be mentioned that the provided data focus on hospital-associated infections 
(and tertiary care centres) and do not apply to community-associated infections. 
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We now mention this in the fifth paragraph of the discussion. 
 
Finally, there should be a warning against the future use of ATLAS data without critical 
appraisal; there is very low “accuracy”, and too little information about the sampling 
scheme and its representativeness. On certain websites (
https://www.amrindustryalliance.org/case-study/antimicrobial-testing-leadership-and-
surveillance-atlas/) they claim that ”ATLAS is the only database of its kind capable of 
providing such a broad scope of reliable, readily available information in an easy to use 
platform” which is “crucial for clinicians and public health officials”, which could have 
important implications. 
We now mention some cautionary advice regarding the ATLAS database in the second 
paragraph of the discussion and in the conclusion. Our primary purpose in this study wasn’t 
to appraise the ATLAS database, but to see how it could be used. 
 
Please also report about the future prospects of ATLAS data, and whether this database 
will remain available and/or will be updated with new data? 
We have now added this information in the second paragraph of the discussion. To the best 
of our knowledge, the ATLAS database will remain available and be updated every 6 to 8 
months.  

Competing Interests: No competing interests were disclosed.
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Liam Shaw   
Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK 

This is an important proof-of-concept study. The aim is to provide a "clinically-oriented 
presentation of resistance rates" from available AMR surveillance datasets. The main conclusion is 
that while this is technically possible for some syndromes, the datasets are not yet adequate. 
  
I enjoyed reading the manuscript and anticipate that it will be read with interest by other 
researchers interested in this general approach. Thanks to the authors for carrying out this work! 
  
Positive points:

An impressive integration with existing datasets beyond the central dataset (ATLAS). 
 

○

A range of sources of data have been synthesised – not just resistance rates but also 
information on syndromes, guidelines, etc. 

○
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Clear presentation of methodology and results. 
 

○

Online interactive app so readers can experiment themselves and get a feel for the 
approach. 
 

○

Reproducibility: I could successfully clone the github repository and run the app myself in 
under a minute. 
 

○

I have selected "Approved with reservations" as I do have some suggestions for improvement, 
which I hope the authors will consider. 
  
Major points

Infection syndromes: 
I think a strict definition of what is meant by “infection syndrome” should be given, as 
readers may not be that familiar with the term (I admit I wasn’t totally clear what was meant 
without looking at the examples). With the caveat that I am not a clinician, I think it is 
underplayed that the infection syndromes looked at are often not known to be due to 
bacteria. For example, upper respiratory tract infections – the majority are viral (the Further 
Methods state 90%). And for bacteraemia, patients can present only with fever, at which 
point a decision has to be made about treatment. It seems to me it would be less common 
to have a scenario where a patient has a known bacterial infection syndrome but nothing is 
known beyond that. This may be my own ignorance; I’d welcome any supporting evidence 
about how often this is the case in practice. 
 
I know the authors are aware of this problem, but I think it should be stated explicitly that 
the problem considered here is: “an ideal world where one was confident that an infection 
was bacterial but did not know the species or the resistance profile” (I think that’s a 
reasonable formulation?). The effect of including the proportion expected to be non-
bacterial and therefore unaffected by antibiotics would be to reduce the likelihood of 
prescribing antibiotics. The high proportion of recommendations to treat with antibiotics 
beyond first-line antibiotics is driven by this exclusively bacterial assumption (and the 
resistance datasets used). This should be emphasised. 
 
To be clear, I’m not suggesting redoing all this work taking into account the proportion of 
patients presenting with symptoms X/Y/Z who have a bacterial vs. viral infection. The work 
here stands in its own right. However, the major problem in antibiotic prescribing is the 
decision to prescribe antibiotics *at all* rather than deciding whether to prescribe 
first/second/third-line antibiotics. I think this needs to be mentioned up front; at present it 
comes very late as the fourth limitation in the discussion. In practice this is what most 
readers will think of when thinking about antibiotic stewardship and how prescribing apps 
might help. 
 

1. 

Accuracy 
I appreciate this is always put in quotes to emphasise the restricted sense of “accurate” that 
is meant, but I still think this is the wrong term. I suggest changing all uses of it and 
avoiding the word entirely. “Accurate” suggests that the ground truth or right answer can 
be derived from the ResistanceMap or ECDC dataset, and that because the ATLAS point 

2. 
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estimate lies outside the 95% confidence interval from these datasets it is “inaccurate”, 
which I think is misleading. The right answer for the ‘true’ prevalence of resistance isn’t 
known in this circumstance, and in fact resistance prevalence is context-dependent on the 
sampling (community vs. hospital etc.). I’d suspect variation in sampling is the driver, as 
suggested, and also that the ATLAS dataset for some countries might include only a few 
sites. What is being defined is not accuracy, but agreement between datasets. So, 
“concordance” or “agreement” would be a better term. 
 
I would also be interested to see a plot using data presented in Supplementary Figure 1, but 
adding the agreement against the number of samples that went into producing the ATLAS 
point estimate. If the problem driving low agreement is not enough samples in the ATLAS 
dataset, then more samples would produce more agreement with ECDC. If the problem is 
differences in sampling (e.g. bias towards resistant organisms in ATLAS due to specific 
clinical setting) then more samples in ATLAS would produce less agreement with ECDC. It 
might not be as clear-cut as I’m assuming, but at the moment this isn’t clear. It seems like 
an important distinction to shed light on. 
 
Comparison with other datasets 
I agree that ECDC data is merged into ResistanceMap and the resistance rates for those 
countries are therefore the same. Therefore, I’m a bit confused why a comparison is made 
of ATLAS vs. ECDC and ATLAS vs. ResistanceMap without apparently removing ECDC as far 
as I could tell? Fundamentally the ECDC data is inside ResistanceMap. It seems to me that 
the important comparisons would be ATLAS vs. ECDC and ATLAS vs. (ResistanceMap – 
ECDC). I think for this reason there’s currently double-counting going on in Supplementary 
Figure 1, 2, 3 which could be rectified. If I misunderstood and this has already been 
removed, apologies!

3. 

  
Minor points 
 
I have ordered these by section. 
  
Introduction

Para 1: First sentence, suggest replacing “being known” by “determined by tests” (as 
highlights that this can only be really known by some sort of test/procedure outside normal 
clinical assessment, and also that sometimes tests are inconclusive). 
 

○

Para 2: “infection syndrome” --> “infection syndromes”. 
 

○

Para 3: suggest providing example(s) of a bacterial infection syndrome where the aetiology 
varies by season. 
 

○

Para 4: think the usual phrase is “resource-limited” rather than “resource constrained” (I 
could be wrong) 
 

○

Para 5: “which have limited healthcare budgets and difficulties to access medicines” --> 
“which can have limited healthcare budgets and access to medicines” 
 

○

Para 6: “infection syndromes” need to be defined earlier. Suggest in Para 2.○
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Methods

Para 2: “This dataset was made public in 2017” – I accept this was when the ATLAS website 
went live, but the dataset was made browsable, not downloadable. Worth explaining that 
the whole dataset as csv was actually released in 2018 to participants in Data Reuse Prize. 
 

○

Para 5, Surveillance data comparison: see major point about changing “accuracy” (and 
change elsewhere as well). 
 

○

(a) “Common infection syndromes”: I’m not sure if all these syndromes are identifiable with 
simple clinical examination and/or radiology, so just want to check this point i.e. what’s 
meant by “clinical examination”. As I mentioned, as far as I’m aware patients can present 
only with fever for bacteraemia, so I’m not sure how it can be easily identified. Also, the 
syndromes are assumed to be independent of each other i.e. patients present with only 
one. This is a limitation as in practice they can be linked e.g. bacterial meningitis develops 
from initial bacteraemia. Or e.g. NICE guidelines highlight link between hospital-acquired 
pneumonia and bacteraemia.   
 

○

“NICE guideline” --> “NICE guidelines”. Also, the link to the NICE guidelines (reference 8) is 
wrong. It takes me to PHE’s 119-page document “Summary of antimicrobial prescribing 
guidance – managing common infections”. I think the correct link should be: 
https://www.nice.org.uk/Media/Default/About/what-we-do/NICE-
guidance/antimicrobial%20guidance/summary-antimicrobial-prescribing-guidance.pdf Is 
this correct? Assuming these are the correct guidelines, I became slightly confused about 
how the syndromes were identified. For example, upper respiratory tract infection as 
defined in Table 2 doesn’t include “acute otitis media”, which is included in this syndrome in 
the NICE guidelines. The first-choice treatment for acute otitis media is amoxicillin, rather 
than penicillin V. I have not investigated all the other syndromes but I just want to check 
why this was excluded? Apologies if I missed this somewhere. 
 

○

On this point, I couldn’t find the guidelines for bacteraemia in that NICE link. “Bacteraemia” 
is the presence of bacteria in the blood; “sepsis” is probably a better term for the infection 
syndrome. I noticed that the app uses “sepsis”, but the main paper uses “bacteraemia”, 
suggest to make them consistent.   
 

○

(d) “Contributing pathogen distribution: syndrome aetiology”: on “rapid literature search”, it 
would be good to know how this review worked in practice e.g. searching PubMed / Google 
Scholar / the wider web? One author assigned to a syndrome? One author doing all 
syndromes? How were results integrated? There’s no problem at all with it being rapid and 
informal, but a little more info on the process would be great.

○

  
Results

Table 3: the summary table of the recommendations for therapy is based on the arbitrary 
15% cut-off. This should be stated in the caption of the table. I think it would be good to 
present the actual distributions in a supplementary figure (i..e. the percentages for the 
index), but this isn’t essential. I would also state that only those syndromes with an average 
above 50% were included (which I infer from the associated text). Column stating “Average 
syndrome coverage” – presume “Mean syndrome coverage” is meant instead. 

○
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(g) “Resulting recommendations on the appropriateness of empiric antibiotic therapies” 
Para 3: bacterial meningitis has an “average syndrome coverage” of 0.51 in Table 3, so why 
does a sentence here state it has lower than 50%? Also, suggest stating the syndrome 
coverages for these syndromes that are not listed in Table 3. 
 

○

Figures: in general, please check the resolution of the figures. For example, Figure 3 seems 
quite low-res to me. For Figure 1: the arrows on the left-hand side aren’t clear, I got a bit 
confused with the arrows pointing to other arrows. Suggest using a colour key for these 
arrows instead. 
 

○

Table 2: “Infectious syndrome” --> “Infection syndrome” (first column)○

  
Discussion

Para 3: “over-representation of antibiotic-resistant isolates in the ATLAS datasets” – see 
previous comment about a plot of ATLAS sample size against agreement with ECDC which 
might provide some more support for the hypothesis causing this. 
 

○

Para 5: “antimicrobial resistance” --> AMR○

  
Conclusion

“the WHO calls for” --> “the WHO’s call for”. Also provide a reference for this call for 
“evidence-based prescribing”. I wasn’t sure what was being referred to.

○

  
Further methods

Section 1: no new MIC thresholds were included, which is acknowledged as a limitation. 
These would not in principle be difficult to include from EUCAST and could bump up the 
dataset. For example, E. coli and ceftaroline-avibactam: there are 13,203 isolates with a 
reported MIC. The EUCAST breakpoint is 0.5 mg/L. So using my version of the ATLAS 
dataset, 139/13,202 isolates (1.05%) are resistant. I accept compiling bug/drug 
combinations for breakpoints (and considering both EUCAST and CLSI) would be tedious, 
and so much data integration has already been done! I’d be happy to approve the paper 
without this extra work. But it would be good to have some idea of how much doing this 
would increase sample sizes, which could be done without external data integration. 
 

○

Section 3: This paragraph is quite dense and a brief overview in the main paper would be 
useful, because the index is a key concept. In a talk based on this work by Francesc Coll at a 
SEDRIC meeting on October 9th 2019, I saw a great diagram, I think of the example given 
here. I would strongly suggest including this as a figure in the main paper, as it quickly 
conveys the idea of the index visually.

○

  
Further results

Section 3: Upper respiratory tract infection has a reference (49) which is missing from the 
references at the end of this document. 
 

○

 
Is the work clearly and accurately presented and does it cite the current literature?
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Partly

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: I entered the same competition as the authors (Wellcome AMR Data Reuse 
Prize) and received a runner-up award. I also did a short masters project supervised by Gwen 
Knight in 2014. I do not feel this has unduly biased my review.

Reviewer Expertise: My main research area is bacterial genetics, including antimicrobial 
resistance. I also have direct experience of analysing the ATLAS dataset used in this work.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 19 Jun 2020
Quentin Leclerc, London School of Hygiene & Tropical Medicine, London, UK 

This is an important proof-of-concept study. The aim is to provide a "clinically-oriented 
presentation of resistance rates" from available AMR surveillance datasets. The main 
conclusion is that while this is technically possible for some syndromes, the datasets are 
not yet adequate. 
  
I enjoyed reading the manuscript and anticipate that it will be read with interest by other 
researchers interested in this general approach. Thanks to the authors for carrying out this 
work! 
  
Thank you for your comments and review, much appreciated. We have left your comments 
in bold and italics below, while our answers are written in plain text. 
 
Positive points:

An impressive integration with existing datasets beyond the central dataset 
(ATLAS). 

○
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A range of sources of data have been synthesised – not just resistance rates but also 
information on syndromes, guidelines, etc. 

○

Clear presentation of methodology and results. ○

Online interactive app so readers can experiment themselves and get a feel for the 
approach. 

○

Reproducibility: I could successfully clone the github repository and run the app 
myself in under a minute. 

○

I have selected "Approved with reservations" as I do have some suggestions for 
improvement, which I hope the authors will consider. 
  
Major points

Infection syndromes:I think a strict definition of what is meant by “infection 
syndrome” should be given, as readers may not be that familiar with the term (I 
admit I wasn’t totally clear what was meant without looking at the examples). With 
the caveat that I am not a clinician, I think it is underplayed that the infection 
syndromes looked at are often not known to be due to bacteria. For example, upper 
respiratory tract infections – the majority are viral (the Further Methods state 90%). 
And for bacteraemia, patients can present only with fever, at which point a decision 
has to be made about treatment. It seems to me it would be less common to have a 
scenario where a patient has a known bacterial infection syndrome but nothing is 
known beyond that. This may be my own ignorance; I’d welcome any supporting 
evidence about how often this is the case in practice.I know the authors are aware of 
this problem, but I think it should be stated explicitly that the problem considered 
here is: “an ideal world where one was confident that an infection was bacterial but 
did not know the species or the resistance profile” (I think that’s a reasonable 
formulation?). The effect of including the proportion expected to be non-bacterial 
and therefore unaffected by antibiotics would be to reduce the likelihood of 
prescribing antibiotics. The high proportion of recommendations to treat with 
antibiotics beyond first-line antibiotics is driven by this exclusively bacterial 
assumption (and the resistance datasets used). This should be emphasised.To be 
clear, I’m not suggesting redoing all this work taking into account the proportion of 
patients presenting with symptoms X/Y/Z who have a bacterial vs. viral infection. 
The work here stands in its own right. However, the major problem in antibiotic 
prescribing is the decision to prescribe antibiotics *at all* rather than deciding 
whether to prescribe first/second/third-line antibiotics. I think this needs to be 
mentioned up front; at present it comes very late as the fourth limitation in the 
discussion. In practice this is what most readers will think of when thinking about 
antibiotic stewardship and how prescribing apps might help.

1. 

Thank you for this comment. We have now added a clearer definition of “infection 
syndrome” in the second paragraph of the Introduction. In addition, we have added a 
statement in the last paragraph of the Introduction to clearly mention that we are assuming 
that we are in a scenario where an antibiotic has to be prescribed, and we therefore aim to 
answer the question of which antibiotic should be prescribed. 
 

AccuracyI appreciate this is always put in quotes to emphasise the restricted sense 
of “accurate” that is meant, but I still think this is the wrong term. I suggest 

1. 
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changing all uses of it and avoiding the word entirely. “Accurate” suggests that the 
ground truth or right answer can be derived from the ResistanceMap or ECDC 
dataset, and that because the ATLAS point estimate lies outside the 95% confidence 
interval from these datasets it is “inaccurate”, which I think is misleading. The right 
answer for the ‘true’ prevalence of resistance isn’t known in this circumstance, and 
in fact resistance prevalence is context-dependent on the sampling (community vs. 
hospital etc.). I’d suspect variation in sampling is the driver, as suggested, and also 
that the ATLAS dataset for some countries might include only a few sites. What is 
being defined is not accuracy, but agreement between datasets. So, “concordance” 
or “agreement” would be a better term.

Thank you for this suggestion to improve clarity; we have now replaced “accuracy” by 
“agreement” throughout the manuscript. 
 
I would also be interested to see a plot using data presented in Supplementary Figure 1, 
but adding the agreement against the number of samples that went into producing the 
ATLAS point estimate. If the problem driving low agreement is not enough samples in the 
ATLAS dataset, then more samples would produce more agreement with ECDC. If the 
problem is differences in sampling (e.g. bias towards resistant organisms in ATLAS due to 
specific clinical setting) then more samples in ATLAS would produce less agreement with 
ECDC. It might not be as clear-cut as I’m assuming, but at the moment this isn’t clear. It 
seems like an important distinction to shed light on. 
 
Thank you for this suggestion. We have now divided Supplementary Figure 1 into two 
sections; A) is the old Supplementary Figure 1, and B) is a new plot showing agreement 
against number of ATLAS samples used to calculate that agreement. One sample is one 
isolate, for one bacteria, one antibiotic, and one country. This new plot suggests that more 
ATLAS samples produce more agreement with ECDC and ResistanceMap, however this does 
not seem clear-cut as the increase in agreement is arguably not significant past 30,000 
samples. Therefore, this suggests that while increasing sample size can increase 
agreement, there is still a difference between the datasets, which could be due to 
differences in sampling. We now discuss this in the Extended Data – Further Results section, 
and have added a sentence on the difference in sampling between the datasets in the 
discussion section in the main text. 
 

Comparison with other datasetsI agree that ECDC data is merged into 
ResistanceMap and the resistance rates for those countries are therefore the same. 
Therefore, I’m a bit confused why a comparison is made of ATLAS vs. ECDC and ATLAS 
vs. ResistanceMap without apparently removing ECDC as far as I could tell? 
Fundamentally the ECDC data is inside ResistanceMap. It seems to me that the 
important comparisons would be ATLAS vs. ECDC and ATLAS vs. (ResistanceMap – 
ECDC). I think for this reason there’s currently double-counting going on in 
Supplementary Figure 1, 2, 3 which could be rectified. If I misunderstood and this 
has already been removed, apologies!

1. 

Thank you for this suggestion. Our aim behind this comparison was to see how well the 
ATLAS dataset agreed with other AMR surveillance datasets, therefore we made all the 
comparisons against the full datasets (i.e. without removing the ECDC data from 
ResistanceMap). We believe this is the valid comparison to make as this will be the one that 
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others are doing too: how do results from ATLAS analysis compare to results from 
ResistanceMap analysis rather than subsetting the latter database and comparing. 
We agree that a more in-depth comparison between the AMR surveillance datasets would 
be interesting, however this would require a much larger analysis to be correctly examined. 
We therefore think that this is outside the scope of this paper as it would represent a 
different research question. 
 
Minor points 
 
I have ordered these by section. 
  
Introduction

Para 1: First sentence, suggest replacing “being known” by “determined by tests” (as 
highlights that this can only be really known by some sort of test/procedure outside 
normal clinical assessment, and also that sometimes tests are inconclusive).

○

Thank you for this suggestion, we have made the recommended change to “determined by 
diagnostic tests”.

Para 2: “infection syndrome” --> “infection syndromes”.○

Thank you for spotting this mistake, we have now corrected it.
Para 3: suggest providing example(s) of a bacterial infection syndrome where the 
aetiology varies by season.

○

We have now added the example of pneumonia as a bacterial infection syndrome where 
aetiology varies by season.

Para 4: think the usual phrase is “resource-limited” rather than “resource 
constrained” (I could be wrong)

○

We have made the recommended change to “resource-limited”.
Para 5: “which have limited healthcare budgets and difficulties to access medicines” 
--> “which can have limited healthcare budgets and access to medicines”

○

 We have rephrased this section as recommended.
Para 6: “infection syndromes” need to be defined earlier. Suggest in Para 2.○

We have now added a definition of “infection syndromes” in paragraph 2 of the 
Introduction. 
  
Methods

Para 2: “This dataset was made public in 2017” – I accept this was when the ATLAS 
website went live, but the dataset was made browsable, not downloadable. Worth 
explaining that the whole dataset as csv was actually released in 2018 to 
participants in Data Reuse Prize.

○

Thank you for this clarification, we have added a sentence in paragraph 2 of the Methods to 
explain this.

Para 5, Surveillance data comparison: see major point about changing “accuracy” 
(and change elsewhere as well).

○

“accuracy” has now been replaced by “agreement” throughout the manuscript. 
 

(a) “Common infection syndromes”: I’m not sure if all these syndromes are 
identifiable with simple clinical examination and/or radiology, so just want to check 

○
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this point i.e. what’s meant by “clinical examination”. As I mentioned, as far as I’m 
aware patients can present only with fever for bacteraemia, so I’m not sure how it 
can be easily identified. Also, the syndromes are assumed to be independent of each 
other i.e. patients present with only one. This is a limitation as in practice they can 
be linked e.g. bacterial meningitis develops from initial bacteraemia. Or e.g. NICE 
guidelines highlight link between hospital-acquired pneumonia and bacteraemia.  

Infection syndromes cover a wide range of possibilities and you are right that bacteraemia 
is notoriously difficult to pin down characteristic features for – fever is really the only reliably 
present element. Clinical examination essentially encompasses all the elements of medical 
examination. This would start with taking temperature and performing basic observations 
through to examining different parts of the body to look for localized evidence of infection.  
Few of the infection syndromes have entirely reliable identification in practice. You are right 
that bacteraemia often co-exists with some of the other syndromes, but apart from that, 
overlap is relatively rare. 
We have included further discussion of this in the discussion (paragraph 3).

“NICE guideline” --> “NICE guidelines”. Also, the link to the NICE guidelines 
(reference 8) is wrong. It takes me to PHE’s 119-page document “Summary of 
antimicrobial prescribing guidance – managing common infections”. I think the 
correct link should be: https://www.nice.org.uk/Media/Default/About/what-we-
do/NICE-guidance/antimicrobial%20guidance/summary-antimicrobial-prescribing-
guidance.pdf Is this correct? Assuming these are the correct guidelines, I became 
slightly confused about how the syndromes were identified. For example, upper 
respiratory tract infection as defined in Table 2 doesn’t include “acute otitis media”, 
which is included in this syndrome in the NICE guidelines. The first-choice treatment 
for acute otitis media is amoxicillin, rather than penicillin V. I have not investigated 
all the other syndromes but I just want to check why this was excluded? Apologies if 
I missed this somewhere.

○

Thank you for the corrected link. For “acute otitis media” (AOM), even though this infection 
is frequently caused by bacteria, there are typically no bacterial samples sent for patients. 
This is because AOM occurs on the inside of eardrum, hence it is hard to access unless the 
eardrum is perforated. We confined our work to infection syndromes where there were 
easily corresponding bacterial isolates. To make recommendations about AOM, one would 
normally draw inferences from bacteria isolates from other body sites, which we have 
avoided doing here.   
Broadly, we agree with the reviewer that this is a limitation of our analysis. We aimed to 
provide a tool that could be used at the point of prescribing antibiotics to treat an “infection 
syndrome”. We therefore make no clear statements about whether these are independent 
or upon what level of evidence the decision is made. We have added this as a limitation into 
our discussion section (paragraph 3).

On this point, I couldn’t find the guidelines for bacteraemia in that NICE link. 
“Bacteraemia” is the presence of bacteria in the blood; “sepsis” is probably a better 
term for the infection syndrome. I noticed that the app uses “sepsis”, but the main 
paper uses “bacteraemia”, suggest to make them consistent.  

○

You are correct that there is no mention of bacteraemia in the NICE guidelines – we felt that 
we should add this as a recommendation category. The terms sepsis and bacteraemia are 
often used interchangeably, though they refer to different phenomena. For consistency, we 
will use the term “bloodstream infection” as the standard description for both the app and 
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the paper. 
(d) “Contributing pathogen distribution: syndrome aetiology”: on “rapid literature 
search”, it would be good to know how this review worked in practice e.g. searching 
PubMed / Google Scholar / the wider web? One author assigned to a syndrome? One 
author doing all syndromes? How were results integrated? There’s no problem at all 
with it being rapid and informal, but a little more info on the process would be great.

○

Thank you for this suggestion. We have now added this information in the main text. 
  
Results

Table 3: the summary table of the recommendations for therapy is based on the 
arbitrary 15% cut-off. This should be stated in the caption of the table. I think it 
would be good to present the actual distributions in a supplementary figure (i..e. the 
percentages for the index), but this isn’t essential. I would also state that only those 
syndromes with an average above 50% were included (which I infer from the 
associated text). Column stating “Average syndrome coverage” – presume “Mean 
syndrome coverage” is meant instead.

○

We now mention the 15% cut-off in the caption, and have corrected the column to indicate 
“Mean syndrome coverage”. In the Extended Data (Further Methods) section we 
acknowledge that the 15% cut-off is rather conservative compared to the 25% resistance 
rate recommended by European guidelines for managing hospital-acquired and ventilator-
acquired pneumonia (1[QL1] ). Hence why we allow the user to vary this in the app.

(g) “Resulting recommendations on the appropriateness of empiric antibiotic 
therapies”Para 3: bacterial meningitis has an “average syndrome coverage” of 0.51 
in Table 3, so why does a sentence here state it has lower than 50%? Also, suggest 
stating the syndrome coverages for these syndromes that are not listed in Table 3.

○

Thank you for spotting this mistake, bacterial meningitis should not have been in this 
sentence. We have now corrected that, and give the syndrome coverage values in the text 
for the two syndromes with a coverage of less than 50%.

Figures: in general, please check the resolution of the figures. For example, Figure 3 
seems quite low-res to me. For Figure 1: the arrows on the left-hand side aren’t clear, 
I got a bit confused with the arrows pointing to other arrows. Suggest using a colour 
key for these arrows instead.

○

Thank you for pointing this out, we have now edited all Figures to be of higher resolution, 
and have added two types of arrows in Figure 1 to hopefully make this figure clearer.

Table 2: “Infectious syndrome” --> “Infection syndrome” (first column)○

We have now corrected this. 
  
Discussion

Para 3: “over-representation of antibiotic-resistant isolates in the ATLAS datasets” – 
see previous comment about a plot of ATLAS sample size against agreement with 
ECDC which might provide some more support for the hypothesis causing this.

○

Thanks again for this comment – we have now added an extra sentence here to highlight 
the differences in sampling between the datasets.

Para 5: “antimicrobial resistance” --> AMR○

We have corrected this to the recommended abbreviation. 
  

 
Page 42 of 44

Wellcome Open Research 2020, 4:140 Last updated: 23 MAR 2022



Conclusion
“the WHO calls for” --> “the WHO’s call for”. Also provide a reference for this call for 
“evidence-based prescribing”. I wasn’t sure what was being referred to.

○

Thank you for highlighting this, we have corrected the sentence and added a reference for 
this call. 
  
Further methods

Section 1: no new MIC thresholds were included, which is acknowledged as a 
limitation. These would not in principle be difficult to include from EUCAST and could 
bump up the dataset. For example, E. coli and ceftaroline-avibactam: there are 
13,203 isolates with a reported MIC. The EUCAST breakpoint is 0.5 mg/L. So using my 
version of the ATLAS dataset, 139/13,202 isolates (1.05%) are resistant. I accept 
compiling bug/drug combinations for breakpoints (and considering both EUCAST and 
CLSI) would be tedious, and so much data integration has already been done! I’d be 
happy to approve the paper without this extra work. But it would be good to have 
some idea of how much doing this would increase sample sizes, which could be done 
without external data integration.

○

Thank you for raising this interesting point. We did not consider this further data 
integration when completing this work, however you are undeniably correct when saying 
that it would increase the number of useful data points in the ATLAS dataset. The issue 
would come with deciding which guideline to follow and to split our analysis further by 
EUCAST and CLSI for example would indeed by a large amount of extra work. We did do 
some of this work by using existing breakpoints in the data for isolates without a 
classification but an MIC value. 
We have now added a few sentences at the end of this section to clarify that we did not do 
this, but that it could potentially be applied to increase the value of the dataset. We also 
would note that many of the antibiotics where the additional data would be added (eg 
ceftaroline-avibactam, colistin etc) are very “high-level” antibiotics that would not feature in 
empirical guidelines. 

Section 3: This paragraph is quite dense and a brief overview in the main paper 
would be useful, because the index is a key concept. In a talk based on this work by 
Francesc Coll at a SEDRIC meeting on October 9th 2019, I saw a great diagram, I 
think of the example given here. I would strongly suggest including this as a figure 
in the main paper, as it quickly conveys the idea of the index visually.

○

We thank you for this suggestion and have now included a further figure (Figure 3) based 
on        the slide presented.   
 
Further results

Section 3: Upper respiratory tract infection has a reference (49) which is missing 
from the references at the end of this document.

○

Thank you for spotting this mistake. We have corrected this to indicate the correct reference 
number (17), and have added the reference in the bibliography. 
 
 [QL1]A. Torres et al., International ERS/ESICM/ESCMID/ALAT guidelines for the 
management of hospital-acquired pneumonia and ventilator-associated pneumonia. 
European Respiratory Journal. 50, 1700582 (2017).  
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