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The emergence and spread of Mycobacterium tuberculosis (Mtb) 
resistant to multiple antituberculosis drugs is of global con-
cern. Programmatically incurable tuberculosis (TB), where 

effective treatment regimens cannot be provided owing to resistance 
to the available drugs, is a growing problem1. Resistance to rifam-
picin and isoniazid is classed as multidrug-resistant tuberculosis  
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(MDR-TB), and further resistance to the fluoroquinolones and any 
of the injectable drugs (amikacin, kanamycin or capreomycin) used 
to treat MDR-TB is termed extensively drug-resistant tuberculosis 
(XDR-TB). Treatment for patients with drug-resistant tuberculo-
sis is prolonged and expensive, and outcomes are poor2. The drugs 
used are toxic and poorly tolerated, and adverse events are common 
and may be severe and irreversible3. Inadequate treatment also risks 
amplification of resistance to further drugs and may prolong oppor-
tunities for transmission4.

Mtb has a clonal genome (size of 4.4 Mb) with a low mutation 
rate and no evidence of between-strain recombination or horizontal 
gene transfer5. The Mtb complex comprises seven lineages, of which 
four are predominant in humans: lineage 1, Indo-Oceanic (for 
example, East African–Indian (EAI) spoligotype families); lineage 2,  
East Asian (for example, W/Beijing spoligotype families); lineage 3, 
East African–Indian (for example, Central Asian strain (e.g., CAS-
DELHI) spoligotype families); and lineage 4, Euro-American (for 
example, Latin American–Mediterranean (LAM), Haarlem and the 
‘ill-defined’ T spoligotype families)5.

Resistance in Mtb is mainly conferred by nucleotide variations 
(SNPs and indels) in genes encoding drug targets or drug-con-
verting enzymes. Changes in efflux pump regulation may have an 
impact on the emergence of resistance6, and putative compensa-
tory mechanisms to overcome fitness impairment coincidental with 
the acquisition of resistance have been described for some drugs7. 
Detection of resistance-conferring mutations offers a means of rap-
idly identifying resistance to antituberculosis drugs8 but, with the 
exception of rifampicin, current molecular tests for resistance lack 
high levels of sensitivity8. To improve knowledge of genetic deter-
minants of drug resistance, we undertook whole-genome analysis 
of a large collection of clinical isolates (n =  6,465) from more than 
30 geographic locations, representing the four major Mtb lineages 
(Fig. 1 and Supplementary Table 1). We adopted a GWAS approach 
to identify nucleotide variation and loci underlying drug resistance 

as successfully applied in Mtb9–11 and other bacteria12,13. A total of 
14 drugs with available phenotypic data on drug susceptibility test-
ing were investigated (Supplementary Table  2). Phenotypic drug 
susceptibility data were not available for each of the 14 drugs for 
every isolate, and sample sizes ranged from over 6,000 for the most 
commonly tested first-line drugs (isoniazid and rifampicin) to 255 
and 248 for para-aminosalicylic acid and cycloserine, respectively, 
which are used to treat patients with XDR-TB. Here we present 
findings from the most comprehensive study yet undertaken of the 
genetic determinants of resistance to antituberculosis drugs, or the 
Mtb resistome.

Results
Genetic diversity and drug resistance. High-quality genome-
wide SNPs (102,160), indels (11,122) and large deletions (284) 
were identified across all samples (n =  6,465). Most SNPs (93.1%) 
had rare minor alleles (allele frequency < 1%) (Supplementary 
Fig.  1). Similarly, small indels were rare (96.6% had frequency < 
1%) and ranged in size from 1 to 45 bp. A phylogenetic tree and 
principal-component analysis constructed using all genome-
wide SNPs showed the expected clustering by lineage (Fig.  2 and 
Supplementary Fig. 2).

Phenotypic analysis of susceptibility to antituberculosis drugs 
found that 31.2% of isolates were resistant to at least one drug, with 
15.1% categorized as MDR-TB and 4.3% categorized as XDR-TB 
(Fig. 2 and Supplementary Table 2). Fourteen drugs were included in 
the genome-wide analysis: isoniazid (INH), rifampicin (RIF), ethi-
onamide (ETH), pyrazinamide (PZA), ethambutol (EMB), strepto-
mycin (STM), amikacin (AMK), capreomycin (CAP), kanamycin 
(KAN), ciprofloxacin (CIP), ofloxacin (OFL), moxifloxacin (MOX), 
cycloserine (CYS) and para-aminosalicylic acid (PAS). Drug fam-
ily groups including the second-line injectable drugs (SLIDs: AMK, 
KAN and CAP) and fluoroquinolones (FLQs: CIP, OFL and MOX) 
were also analyzed. Insufficient phenotypic data were available for 
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Fig. 1 | Geographic distribution of the 6,465 Mycobacterium tuberculosis isolates analyzed in the study. The world map shows the main geographic 
origins of the Mtb isolates included in this study. The study comprises strains from more than 30 countries, of which the 18 major contributors are shown. 
See Supplementary Table 1 for a detailed description of each dataset. Inner pie charts show the proportion of each of the main four lineages, and the outer 
charts summarize the drug resistance phenotypes. “Drug-resistant” refers to resistant strains not classified as MDR-TB or XDR-TB.
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inclusion of the new and repurposed drugs bedaquiline, delama-
nid and linezolid. To identify loci associated with drug resistance, 
complementary methods were applied to mutations and aggregated 
nonsynonymous mutations: a tree-based ‘PhyC’ test for convergent 
evolution to detect homoplastic variants9 and a GWAS approach 
within a mixed-regression framework (Methods). Unless stated 
otherwise, all analysis used the complete dataset. First, we consid-
ered MDR-TB and XDR-TB phenotypes (Table 1) and then individ-
ual-drug GWAS and evolutionary results (Table 2).

GWAS and PhyC tests for MDR-TB and XDR-TB. The gene-based 
GWAS of MDR-TB versus susceptible isolates identified rpoB (RIF), 
the Rv1482c–fabG1 operon (INH, ETH), inhA (INH, ETH), katG 
(INH) and oxyR´–ahpC (compensatory mechanism for INH). The 
katG mutations at codon 315 (encoding p.Ser315Thr, p.Ser315Asn, 
p.Ser315Arg) were all statistically significant and collectively were the 
most frequent mutations (75.2%) across all the resistance-associated 
loci identified, consistent with a recent study14 and highlighting their 
pivotal role in the emergence of INH resistance and MDR-TB. The 
katG mutation encoding p.Ser315Thr is thought to emerge before 
mutations associated with RIF resistance and, therefore, from an 
evolutionary standpoint, to precede the emergence of MDR-TB14,15. 
However, our analysis highlighted that Rv1482c–fabG1 and inhA 
mutations, in the absence of katG p.Ser315Thr, can emerge before 
MDR-TB, as previously shown in two phylogenetically independent 
clades in Lisbon16,17. The other frequent MDR-TB-associated muta-
tions in our study included rpoB p.Ser450Leu (RIF, 64.2%), embB 
p.Met306Leu, p.Met306Val and p.Met306Ile (EMB, 49.1%), and rpsL 
p.Lys43Arg (STM, 42.2%) (Supplementary Table 3), and the prevalence 
correlated with historical treatment practice and emergence of resis-
tance. There were corresponding signals of INH–RIF co-resistance 
with resistance for other first-line drugs, and gene-based association 
signals were detected for gid (STM) and rpsL (STM) and a SNP-based 
association signal was detected for the embC–embA intergenic region 
(EMB). SNP-based PhyC analysis detected the above loci but in addi-
tion identified folC (PAS), the pncA–Rv2044c intergenic region (PZA) 
and the whiB6–Rv3863 intergenic region (putative STM or ETH).

The gene-based GWAS of XDR-TB versus MDR-TB identified 
mutations in gyrA (FLQ), rrs (aminoglycosides), the embC–embA 
intergenic region and ubiA (EMB). The PhyC test additionally 
revealed eis–Rv2417c (KAN), gyrB (FLQ), rrs (aminoglycosides), 
folC (PAS), alr (CYS) and gid (STM) SNPs and a new mutation in the 
thyX–hsdS.1 intergenic region (c.–9A> T; PAS)18,19. In addition to the 
loci identified above, the gene-based GWAS comparing XDR-TB to 
susceptible groups identified rpoC (a compensatory mechanism for 
RIF resistance), ethA (ETH), eis–Rv2417c (KAN) and PPE52–nuoA 
(a new intergenic region; c.–314G> T). The PhyC test additionally 
detected SNPs in gyrB (FLQ; encoding p.Asp461Asn, p.Asp641His, 
p.Thr500Asn, p.Thr500Ile and p.Ala504Val) and supported the 
SNP finding in the thyX–hsdS.1 intergenic region (PAS; c.–9A> T), 
as well as identified a previously unreported ubiA SNP association 
(EMB; p.Met180Val).

The drrA mutation encoding p.Arg262Gly was significantly 
associated with XDR-TB as compared to susceptible bacteria (muta-
tion frequency =  18% versus 0%, P =  1.5 ×  10−8). We hypothesize 
that drrA may be involved in export of drugs across the membrane 
on the basis of its strong association with XDR-TB in our study 
and its functional annotation as a probable transporter of antibiot-
ics across the membrane (TubercuList; see URLs). This hypothesis 
is in accordance with the finding that rpoB mutations in Mtb may 
trigger compensatory transcriptional changes in genes involved 
in secondary metabolism, in particular, in the biosynthesis and 
export of phthiocerol dimycocerosate (PDIM), increasing expres-
sion and activity. As a consequence, these strains became more 
virulent and multidrug resistant, increasing their fitness through 
increased efflux activity and lipid metabolism20,21. Similarly, a muta-
tion in the Rv1144–mmpL13a intergenic region (c.–102C> A) was 
highly associated with XDR-TB versus susceptibility (mutation fre-
quency =  17% versus 0%, P =  1.5 ×  10−7). This mutation sits in the 
promoter of the operon containing mmpL13a and mmpL13b, which 
encode transmembrane transport proteins, and thus could influ-
ence expression of the encoded proteins6.

Lineage-specific and compensatory mechanisms. We conducted 
GWAS stratified by lineage to identify lineage-specific loci associ-
ated with drug resistance. Most associations were present in more 
than one lineage. The largest number of lineage-specific mutations 
associated with drug resistance were found in lineage 4, which was 
the largest collection investigated and contained more genetically 
diverse clones5, implying that geographically restricted mutations 
are being captured (Supplementary Table  4). A previously unre-
ported putative compensatory locus was identified for PZA (pncB1) 
through analysis of lineage 1, and this locus reached borderline sig-
nificance for lineage 3.

We applied a systematic approach to identify epistatic interac-
tions between GWAS loci (from Table 2) and explored known com-
pensatory effects using a test of non-random association to detect 
the frequent co-occurrence of mutations in pairs of loci (Fisher’s 
exact test, P-value cutoff <  1 ×  10−8) (Supplementary Table 5). Deep 
phylogenetic mutations were removed to increase robustness. This 
approach proved to be successful at identifying well-known com-
pensatory relationships between the rpoB and rpoC loci (RIF)7, 
the rpoB and rpoA loci (RIF)22, and the katG and oxyR´–ahpC loci 
(INH)23. We captured the frequent co-occurrence of embB and ubiA 
mutations, which together are known to lead to high levels of EMB 
resistance24, and these mutations are therefore unlikely to represent 
a compensatory mechanism. New epistatic relationships included 
pncA with pncB2 (PZA) and thyA with thyX–hsdS.1 (PAS). The 
pncB2 epistatic effect with pncA appeared to be specific to lineage 4 
(Supplementary Table 6). The other nicotinamide cofactor, pncB1, 
had weaker evidence of an epistatic relationship with pncA in lin-
eage 1 (P =  0.0016) (Supplementary Table  6). Similarly, there was 
marginal evidence for an effect of pyrG (lineage 4, P =  0.00016)25 and 

Lineages

Lineage 1
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Lineage 2
Lineage 4
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Tree scale: 0.001

Fig. 2 | Whole-genome phylogeny of the 6,465 Mycobacterium 
tuberculosis isolates. Maximum-likelihood phylogenetic tree constructed 
using 102,160 SNPs and 11,122 indels spanning the whole genome and 
rooted on Mycobacterium canetti (not shown), with isolates color-coded 
by lineage (inner circle) and drug resistance status (outer circle). 
“Susceptible” refers to isolates being susceptible to all drugs tested. 
“Drug resistant” refers to strains being resistant to multiple drugs but not 
classified as MDR-TB or XDR-TB.
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Rv0565c (lineage 2, P =  0.00027) with ethA (ETH)26 (Supplementary 
Table 6). Follow-up investigations will need to determine whether 
mutations in these loci have an impact on minimal inhibitory con-
centration (MIC) values or function as compensatory mechanisms.

Overall, the GWAS approach was effective at detecting known 
drug resistance determinants and epistatic (gene–gene) relation-
ships, and it identified new ones that warrant functional validation 
in future studies.

GWAS and PhyC tests for individual drugs. As resistance-con-
ferring loci for individual drugs, especially second-line treatments, 
may be masked by an analysis of the composite MDR-TB and 
XDR-TB outcomes, we repeated the GWAS, PhyC test and epistatic 
analysis for the 14 individual drugs considered.

Rifampicin, isoniazid and ethionamide. The rpoB locus showed the 
strongest association with RIF resistance, but the compensatory 

effects of rpoC and rpoA were also evident through homoplastic 
SNP analysis. As previously reported, nonsynonymous SNPs in 
rpoC (272 identified) were spread across the whole gene27. Altered 
or diminished activity of the catalase–peroxidase enzyme KatG is 
the most frequent mechanism of INH resistance28, and, as expected, 
the katG gene ranked first in the GWAS for this drug. Mutations in 
proposed INH drug targets kasA and kasB previously included in 
some drug resistance databases did not reach statistical significance 
in our study29, suggesting an odds ratio below our detection level of 
1.4 (with 99% confidence of detection, 90% statistical power). Both 
inhA, encoding the molecular target of INH30, and the Rv1482c–
fabG1 intergenic region harboring its promoter, showed strong 
associations with INH and ETH, with greater effects in the former. 
In addition, mutations associated with the oxyR´–ahpC intergenic 
region (20 detected) were found in the presence of katG polymor-
phisms (28), supporting its role as a compensatory mechanism in 
INH-resistant strains. For ETH, the ethA locus, encoding the  

Table 1 | MDR-TB and XDR-TB gene-based associations

Comparison Rv number Gene name P value NS SNPsa Indels (frame.)b Assoc. 
SNPsc

PhyC SNPsd

MDR-TB vs. susc. Rv0667 rpoB 2.99 ×  10–103 159 7 (0) 6 33

MDR-TB vs. susc. Rv1908c katG 2.44 ×  10–65 177 12 (9) 2 8

MDR-TB vs. susc. Rv1482c–Rv1483 Rv1482c–fabG1 1.28 ×  10–17 8 0 1 4

MDR-TB vs. susc. Rv2427A–Rv2428 oxyR´–ahpC 5.26 ×  10–15 17 3 0 7

MDR-TB vs. susc. Rv3919c gid 1.09 ×  10–8 137 26 (26) 0 15

MDR-TB vs. susc. Rv1484 inhA 8.55 ×  10–7 9 0 0 3

MDR-TB vs. susc. Rv0682 rpsL 7.31 ×  10–6 6 0 0 2

XDR-TB vs. 
MDR-TB

Rv0006 gyrA 2.46 ×  10–37 147 0 4 5

XDR-TB vs. 
MDR-TB

rrs rrs 4.33 ×  10–17 91 4 1 5

XDR-TB vs. 
MDR-TB

Rv3806c ubiA 4.22 ×  10–7 47 0 1 1

XDR-TB vs. 
MDR-TB

Rv3793–Rv3794 embC–embA 8.73 ×  10–6 6 6 0 6

XDR-TB vs. susc. Rv0667 rpoB 4.13 ×  10–183 159 7 (0) 5 3

XDR-TB vs. susc. Rv3795 embB 1.54 ×  10–75 168 2 (0) 4 2

XDR-TB vs. susc. Rv2043c pncA 4.33 ×  10–65 117 25 (22) 1 9

XDR-TB vs. susc. Rv1908c katG 9.52 ×  10–60 177 12 (9) 1 1

XDR-TB vs. susc. Rv3793–Rv3794 embC–embA 1.07 ×  10–31 6 6 2 4

XDR-TB vs. susc. rrs rrs 5.14 ×  10–28 91 4 2 3

XDR-TB vs. susc. Rv1482c–Rv1483 Rv1482c–fabG1 1.98 ×  10–27 8 0 2 1

XDR-TB vs. susc. Rv1484 inhA 3.09 ×  10–26 9 0 1 1

XDR-TB vs. susc. Rv0006 gyrA 8.62 ×  10–26 147 0 4 5

XDR-TB vs. susc. Rv0668 rpoC 2.62 ×  10–21 153 1 (0) 1 9

XDR-TB vs. susc. Rv0682 rpsL 2.02 ×  10–18 6 0 1 3

XDR-TB vs. susc. Rv3144c–Rv3145 PPE52–nuoA 3.65 ×  10–11 24 1 1 2

XDR-TB vs. susc. Rv3854c ethA 1.80 ×  10–10 163 38 (35) 0 1

XDR-TB vs. susc. Rv2936 drrA 1.46 ×  10–8 19 0 1 9

XDR-TB vs. susc. Rv2416c–Rv2417c eis–Rv2417c 2.53 ×  10–7 12 1 0 3

XDR-TB vs. susc. Rv1144–Rv1145 Rv1144–mmpL13a 1.48 ×  10–7 33 4 1 2

XDR-TB vs. susc. Rv3854c–Rv3855 ethA–ethR 9.87 ×  10–6 12 0 1 0

This table shows loci (protein- and RNA-coding regions, intergenic regions) associated with MDR-TB and XDR-TB (P <  1 ×  10−5). The PhyC test additionally detected the folC, pncA–Rv2044c and whiB6–
Rv3863 loci when comparing MDR-TB against the susceptible group; eis–Rv2417c, gyrB, rrs, folC, alr, gid and the thyX–hsdS.1 intergenic region when comparing XDR-TB against MDR-TB; and the alr, gyrB, 
pyrG, rpoA and thyX–hsdS.1 loci when comparing XDR-TB against the susceptible group. Similarly, GWAS using SNPs additionally identified embC–embA for MDR-TB vs. the susceptible group (1 SNP), rrs 
and ubiA for XDR-TB vs. MDR-TB (each 1 SNP), and the ubiA gene for XDR-TB vs. the susceptible group (2 SNPs). aThe number of nonsynonymous SNPs in the genes. bThe number of small indels in the 
genes; those resulting in frameshifts are shown in parentheses. cThe number of SNPs identified by GWAS. dThe number of homoplastic SNPs identified using the PhyC test.
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drug-metabolizing enzyme, was found to be associated with resis-
tance as described previously31. A total of 153 nonsynonymous 
mutations were identified in ethA, scattered throughout the gene 
and mostly affecting codons different from those already described8.

Ethambutol. Mutations in the embCAB operon, which encodes 
enzymes involved in the biosynthesis of arabinan components of 
the mycobacterial cell wall, are mostly responsible for EMB resis-
tance, but are not fully penetrant for resistance32. The embB locus 
and the embC–embA intergenic region had the strongest associa-
tions. Rv3806c (ubiA), described to contribute to high levels of EMB 
resistance in vitro17, was also significantly associated in our analysis, 
also demonstrating a role in clinical samples across all four lineages. 
Two novel loci were identified: Rv2820c, thought to enhance myco-
bacterial virulence ex vivo and in vivo, and Rv3300c, encoding a 
conserved protein of unknown function (TubercuList; see URLs).

Pyrazinamide. The pncA locus was the highest ranked association 
with PZA resistance in the GWAS and was a target of independent 
mutation, consistent with its established role33. Additionally, many 

low-frequency SNPs were reported that were not used in the associa-
tion analysis and could potentially confer resistance (Supplementary 
Data  1). Other proposed PZA targets, namely rpsA34 and panD35, 
did not reach statistical significance in the GWAS and were not tar-
gets of independent mutation among PZA-resistant strains in our 
collection.

Streptomycin. The rpsL, rrs and gid loci, all known to be involved in 
STM resistance18, were identified by GWAS. Mutations in rpsL are 
known to lead to intermediate to high levels of STM resistance36; 
accordingly, we observed high odds ratios indicative of high pen-
etrance in association signals in this locus (Fig.  3a). In contrast, 
candidate rrs and gid gene polymorphisms showed weaker overall 
signals (lower odds ratio) in the GWAS, which concurs with exist-
ing evidence that gid and rrs mutations confer lower levels of resis-
tance36 (differences in odds ratios: rpsL versus rrs or gid Wilcoxon 
P =  0.03; rpsL versus gid Wilcoxon P =  0.04).

Fluoroquinolones and second-line injectables. The gene- and SNP-
based GWAS analyses identified the gyrA locus, which encodes 

Table 2 | Individual-drug gene-based associations in the complete dataset

Drug Rv number Gene name P value NS SNPsa Indels (frame.)b Assoc. 
SNPsc

PhyC SNPsd

Isoniazid Rv1908c katG 1.02 ×  10–112 177 12 (9) 1 3

Isoniazid Rv1482c–Rv1483 Rv1482c–fabG1 5.41 ×  10–54 8 0 2 2

Isoniazid Rv2427A–Rv2428 oxyR´–ahpC 8.51 ×  10–27 17 3 0 3

Isoniazid Rv1484 inhA 3.29 ×  10–7 9 0 1 1

Rifampicin Rv0667 rpoB 8.47 ×  10–226 159 7 (0) 7 9

Rifampicin Rv0668 rpoC 2.57 ×  10–8 153 1 (0) 0 9

Ethambutol Rv3795 embB 2.48 ×  10–129 168 2 (0) 4 10

Ethambutol Rv3793–Rv3794 embC–embA 8.49 ×  10–42 6 6 2 5

Ethambutol Rv3806c ubiA 3.93 ×  10–13 47 0 1 2

Ethambutol Rv2820c – 2.55 ×  10–8 16 0 1 0

Ethambutol Rv3300c – 1.33 ×  10–7 39 5 (3) 0 0

Ethionamide Rv1482c–Rv1483 Rv1482c–fabG1 6.01 ×  10–16 8 0 2 2

Ethionamide Rv1484 inhA 6.72 ×  10–7 9 0 1 0

Pyrazinamide Rv2043c pncA 3.62 ×  10–99 117 25 (22) 2 1

Pyrazinamide Rv2043c–Rv2044c pncA–Rv2044c 6.64 ×  10–30 4 1 1 1

Streptomycin Rv0682 rpsL 2.67 ×  10–85 6 0 2 2

Streptomycin Rv3919c gid 3.54 ×  10–26 137 26 (26) 0 1

Streptomycin rrs rrs 3.95 ×  10–13 91 4 1 3

Amikacin rrs rrs 5.28 ×  10–48 91 4 1 1

Kanamycin rrs rrs 1.76 ×  10–48 91 4 2 2

Kanamycin Rv2416c–Rv2417c eis–Rv2417c 9.84 ×  10–21 12 1 1 1

Capreomycin rrs rrs 1.68 ×  10–39 91 4 1 1

Capreomycin Rv2172c–Rv2173 Rv2172c–idsA2 7.18 ×  10–6 18 0 0 0

Ciprofloxacin Rv0006 gyrA 4.48 ×  10–45 147 0 2 2

Moxifloxacin Rv0006 gyrA 2.98 ×  10–23 147 0 3 5

Ofloxacin Rv0006 gyrA 4.87 ×  10–115 147 0 4 6

d-Cycloserine Rv3423c alr 1.23 ×  10–13 57 0 1 0

d-Cycloserine Rv0342 iniA 3.36 ×  10–8 76 13 (12) 1 0

PAS Rv2764c thyA 3.74 ×  10–10 36 4 (4) 0 0

PAS Rv2754c–Rv2755c thyX–hsdS.1 4.27 ×  10–7 21 0 1 1

This table shows loci (protein- and RNA-coding regions, intergenic regions) associated with resistance to individual drugs (P <  1 ×  10−5). The GWAS additionally detected a significant association of a SNP 
(p.Cys213Arg) in the Rv2688c locus (known efflux gene) with moxifloxacin and fluoroquinolones; the PhyC test additionally detected other associated loci for amikacin (eis–Rv2417c), capreomycin and  
d-cycloserine (lhr), kanamycin (thyX–hsdS.1) and rifampicin (rpoA). PAS, para-aminosalicylic acid. aThe number of nonsynonymous SNPs in the genes. bThe number of small indels in the genes; those 
resulting in frameshifts are shown in parentheses. cThe number of SNPs identified by GWAS. dThe number of homoplastic SNPs identified using the PhyC test.
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the molecular target of FLQ37, as the strongest association signal. 
In addition to homoplastic mutations in gyrA, evidence of inde-
pendent mutation was detected in gyrB38. The Rv2688c mutation 
encoding p.Cys213Arg was associated with MOX and FLQ resis-
tance, but did not reach statistical significance for OFL. The antibi-
otic transport ATP-binding protein encoded by Rv2688c is a known 
FLQ efflux pump39. As expected, the strongest gene- and SNP-based 
association signals for resistance across AMK, KAN and CAP were 
with the aminoglycoside (SLID) target gene rrs18. Association was 
observed with mutations in the eis promoter known to result in low 
levels of KAN resistance but not in co-resistance with other ami-
noglycosides40. Although the eis promoter mutations had a lower 
median odds ratio than rrs mutations, potentially providing evi-
dence that rrs mutations confer higher levels of KAN resistance40, 
this was not statistically significant owing to small sample size (dif-
ferences in odds ratios Wilcoxon P =  0.24) (Fig. 3a).

d-Cycloserine. CYS inhibits the Alr enzyme, responsible for the 
conversion of l-alanine into d-alanine, by competing with l-alanine 
for the active site. Resistance to CYS results from mutations in the alr 
coding region41. In our study, alr was significantly associated with CYS 
resistance (Table 2), in line with recent evidence showing that clini-
cal strains with alr mutations exhibit increased resistance to CYS11, 
and harbored multiple homoplastic mutations, including those 
encoding p.Phe4Leu, p.Lys113Arg and p.Met343Thr. In a previous  

study, the mutation encoding p.Met343Thr was detected in an 
XDR-TB strain that had been exposed to CYS treatment, was pre-
dicted to alter the protein structure of Alr and was therefore hypoth-
esized to be involved in CYS resistance42. To further understand the 
functional impact of the mutations found in alr, we modeled the 
effect of these variants using the available crystal structure for the 
protein (PDB 1XFC; Supplementary Fig.  3). Variants in Alr were 
found to differ in their proximity to the CYS-binding site and 
their effect on protein stability and ligand binding (Supplementary 
Table  7). The p.Met343Thr substitution (found in 12 susceptible 
and 2 resistant isolates) was predicted to have a more drastic effect 
on protein structure than p.Lys113Arg, corresponding to the most 
frequent mutation among CYS-resistant isolates (in 7 susceptible 
and 23 resistant isolates). There appears to be a balance between 
the fitness costs associated with mutations and mutation frequency 
(Supplementary Table  7). The mutation encoding p.Met343Thr 
appeared independently throughout the phylogenetic tree but did 
not reach statistical significance for association with drug resistance 
(XDR-TB or CYS), implying that selection may be acting on this 
mutation but drug resistance may not be the driving factor.

para-Aminosalicylic acid. PAS is a prodrug that is converted into its 
active form by ThyA—a thymidylate synthase, which is encoded by 
a gene essential for Mtb survival. The candidate drug resistance loci 
are involved in folate metabolism and biosynthesis of thymidine  
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Fig. 3 | Log odds ratios from SNP–drug resistance associations are a potential surrogate for resistance level. a, For each drug, box plots for the log odds 
ratios (P <  1 ×  10−5) for each gene are arranged by increasing median value (as represented by the horizontal line in each box) to show relative effects on 
resistance. Mutations known to confer low, intermediate or high levels of resistance (Methods) are represented by points colored blue, yellow and red, 
respectively, and point size is proportional to mutation frequency. Overall, higher levels of resistance are reflected by higher odds ratios; one exception is 
for rrs and CAP, where the c.1484G> C or c.1484G> T mutation (high-level resistance) has a lower odds ratio than c.1401A> G (intermediate level) owing 
to its low frequency. A similar effect is seen for the same c.1484G> C and c.1484G> T mutations in KAN resistance. b, The distribution of log odds ratios 
(P <  1 ×  10−5) for mutations within unknown (n =  167) or known loci conferring low (n =  17) (blue), intermediate (n =  16) (yellow) or high (n =  11) (red) 
levels of resistance. c, The distribution of log odds ratios for known (n =  171) and novel (n =  40) drug-resistance-conferring mutations (P <  1 ×  10−5). All 
box plots consist of boxes (median and interquartile range) and whiskers that extend to the most extreme data points that were no more than 1.5 times the 
interquartile range from the box.
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nucleotides (thyA, dfrA, folC, folP1, folP2 and thyX)19. Of these, 
thyA and thyX–hsdS.1 (directly upstream of thyX) were found to be 
associated with PAS drug resistance in both gene- and SNP-based 
GWAS analyses. Notably, it has been shown that the c.–16G> A 
SNP found in our study increases thyX expression by 18-fold rela-
tive to the wild-type promoter, although no link with PAS resistance 
was made18. Of the three PAS-resistant strains with the c.–16G> 
A mutation in the thyX promoter, two also had a thyA mutation 
(p.Pro145Leu and p.His207Arg), further supporting the idea that 
upregulation of thyX is involved in resistance to PAS26 or has a 
compensatory role. The c.–16G> A thyX mutation is a homoplastic 
mutation and is therefore more likely to be compensatory.

Overall, the log-transformed odds ratios for the association of 
mutations with known levels of resistance followed an increasing 
trend from low to intermediate to high (Fig.  3b; log odds ratios: 
linear regression trend P =  1.5 ×  10–9, high versus intermediate 
P =  5.2 ×  10–5; intermediate versus low P =  5.8 ×  10–10). This analysis 
demonstrates the potential utility of odds ratios and their statisti-
cal significance as an indicator of the impact of a mutation and its 
propensity to cause low-, intermediate- or high-level resistance. 
Further, the odds ratios for the novel findings were marginally lower 
than those for known ones (Wilcoxon test P =  8.3 ×  10–5), reflecting 
the ability of the GWAS to discover effect sizes of lower magnitude 
(Fig.  3c). A pathway analysis comparing MDR-TB and XDR-TB 
strains to susceptible strains identified only one significant anno-
tation cluster with 17.7-fold enrichment for antibiotic resistance 
and response to antibiotics (P =  1.6 ×  10–7), further confirming the 
robustness of the GWAS approach.

Association tests using small indels and large deletions. An 
analysis of genome-wide small indels revealed associations in can-
didate resistance genes and operons (Supplementary Table  8 and 
Supplementary Data 1). The candidate genes differed in their abun-
dance of small indels, reflecting their essentiality for survival: drug 
targets had a lower density of indels, whereas drug-metabolizing 
enzymes had a greater density. For example, the pncA gene was the 
most polymorphic coding region (PZA, 44.72 indels/kb), while the 
least polymorphic was rpoB (RIF, 2.3 indels/kb). Although most 
small indels (83%) in the candidate regions were 1 bp in length and 
caused frameshifts, the indels in rpoB inserted or deleted whole 
codons; that is, they did not cause a shift in the codon reading frame. 
Indels in rpoB, pncA and the embAB promoter region were associ-
ated with MDR-TB, XDR-TB and their respective targets/activators. 
Indels in ethA were associated with ETH resistance and XDR-TB. 
Similarly, gid indels were associated with STM, as expected.

The analysis of CYS revealed indel associations with the ald gene, 
supporting recent reports that loss of function in ald confers resis-
tance11. Thus, resistance to CYS appears to be conferred by both 
SNPs in alr and indels in ald. Indels found in rrs were associated 
with KAN and CAP resistance; however, they did not reach statisti-
cal significance for STM, which has a different drug-binding site. 
CAP resistance was also found to be associated with three indels 
in tlyA, two of which are located at the 3′  end of the gene. In gen-
eral, indels were distributed throughout the gene lengths; however, 
there was some evidence of areas of higher density, such as the pncA 
region between codons 130 and 132 (close to the catalytic center) 
and the codon 427–434 region in rpoB.

The only large deletion association identified by GWAS was an 
association between a region encompassing the thyA and dfrA genes 
and PAS resistance. Five samples across four countries contained 
large thyA–dfrA deletions of varying length (Supplementary Fig. 4 
and Supplementary Table 9). Associations of partial or whole-gene 
deletions in katG, ethA and pncA were close to statistical signifi-
cance (P <  0.05). These genes activate prodrugs, and none are con-
sidered to be essential to Mtb survival. The large deletions detected 
occurred independently in different branches of the phylogenetic 

tree and are likely to offer an alternative route to resistance as com-
pared to small genomic variants, across lineages and populations.

Effects on resistance prediction using GWAS variants. We sought 
to establish whether any of the mutations found in association 
and homoplastic analyses increased the predictability of resistance 
phenotypes for individual drugs (Table  3). We used the reported 
phenotypic drug susceptibility test result as the reference standard 
to calculate the sensitivity and specificity for mutation resistance 
predictions. Using a previously established library of mutations8,17 
(TBDR library), we found that, although the sensitivity was greater 
than 80% for 8 of 14 drugs, a substantial proportion of resistance 
phenotypes were not explained by known mutations, particularly in 
second-line drugs. Using the novel SNPs identified in this study, we 
gained sensitivity for PAS (+ 10%), ETH (+ 14%) and CYS ( +  50%; 
not included in the TBDR library) (Table 3). The additional inclu-
sion of small indels and large deletions further improved the predic-
tive ability for nine drugs while maintaining specificities of at least 
90%, except for ETH, which was 72% (Table 3).

Discussion
To provide genomic insights into Mtb drug resistance, we have 
combined the power of whole-genome sequencing with a genome-
wide association analytical approach in the largest and most geo-
graphically widespread study thus far, encompassing a total of 6,465 
clinical isolates of Mtb from more than 30 countries. Large sample 
sizes are required to identify complex or infrequent genetic effects, 
but also to negate effects due to possible errors in phenotypic drug 
susceptibility testing and misclassification43. The lack of standard-
ization of phenotypic testing methodologies for Mtb is also a poten-
tial source of bias, which was reduced by the inclusion of samples 
from different countries and laboratories using a variety of quality-
assured testing methodologies. While resistant phenotypes may be 
imputed from established resistance-causing mutations, susceptibil-
ity to a drug cannot be assumed in the absence of corroborating 
evidence17. The completeness of our susceptibility test data meant 
that both GWAS and homoplasy-based methods could be applied 
across 14 drugs.

The GWAS identified well-established resistance-conferring loci 
and compensatory relationships, thereby confirming the authen-
ticity and robustness of the approach. It also identified several 
recently discovered loci (folC, ubiA, thyX–hsdS.1, thyA, alr, ald 
and dfrA–thyA), new epistatic relationships (pncA with pncB2 and 
thyA with thyX–hsdS.1), and efflux pumps represented by the ABC 
transporters drrA and Rv2688c associated with drug resistance. The 
novel genetic markers associated with resistance identified in this 
GWAS included SNPs in the ethA and thyX promoters, small indels 
in pncA and ald, and large deletions in prodrug activators such as 
ethA and katG. These loci warrant functional follow-up and char-
acterization studies to fully elucidate their role in treatment failure. 
The associations identified may shed light on the molecular mecha-
nisms underlying drug resistance and assist in the design of novel  
antibiotics.

In our study, sample sizes for second-line drugs were reduced 
in comparison to those for first-line drugs. This was due to the 
lower prevalence of resistance to second-line drugs and the fact 
that isolates susceptible to first-line drugs are not routinely tested 
for sensitivity to second-line drugs. However, because of the large 
effect that causal mutations have on drug resistance phenotypes, 
relatively small samples of bacterial genomes can be sufficient to 
identify causal mutations43, as has been demonstrated in previous 
studies on Mtb10–12. It should be noted that bedaquiline, delamanid 
and linezolid were excluded from our analysis owing to the paucity 
of phenotypic susceptibility data.

The analysis highlighted the importance of indels to drug resis-
tance, particularly their high density in drug-metabolizing genes, in 
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contrast to highly essential drug target genes, where their density 
was low. The inclusion of small indels and large deletions improved 
the predictability of resistance phenotypes. However, for drugs like 
CYS and PAS, mechanisms of drug resistance remain unknown, and 
larger numbers of resistant cases will be required to elucidate them. 
It is also possible that unknown mechanisms may be explained by 
epigenetics and gene expression44.

Mtb strains are usually classified as drug resistant or susceptible 
on the basis of their capacity to grow in vitro when exposed to a 
critical concentration of the drug. Phenotypic testing methods have 
a degree of uncertainty, especially close to the threshold43. Testing 
against a range of drug concentrations to establish the MIC is a pre-
ferred approach to determine the level of resistance but is not rou-
tinely undertaken40. MIC values were not available for every isolate 
presented here, but despite this limitation loci known to be involved 
in low levels of resistance (Table 3) were identified by our analysis. 
Indeed, our analysis identified a relationship between known levels 
of resistance and the odds ratios from the GWAS, which could aid 
the clinical interpretation of molecular diagnostic data, including 
measuring the sensitivity and specificity of individual mutations 
when diagnosing drug resistance.

Emergence of resistance is driven by drug exposure, and local 
TB treatment practices are a major influence on the prevalence 
and pattern of resistance. A limitation of this study was the sam-
pling methodology, as collection of the isolates was not controlled 
or systematic and resistant isolates were not evenly distributed 
across collection sites. However, within our study population, we 
covered the four major Mtb lineages across five continents and 
sampled multiple geographic regions, allowing us to observe dif-
ferences in the prevalence of drug-resistance-conferring mutations 
and mechanisms. Some drug resistance and compensatory/epistatic 
relationships were found to vary across geographic populations 
and bacterial lineages, implying that regional variation should be 
considered to fully characterize genotype–phenotype relationships. 
The differential lineage effects could impact on relative virulence 

between strain types. Enhanced understanding of the genetic basis 
of phenotypic antituberculosis drug resistance will also aid in the 
development of more accurate molecular diagnostics for drug-resis-
tant TB. An important finding of this study is the significance of 
genomic variation other than SNPs, which has implications for the 
design of molecular tests for resistance. Improved tools are needed 
to guide treatment of patients with multidrug-resistant disease, 
where personalized treatment offers improved rates of cure45. Next-
generation sequencing offers a comprehensive assessment and may 
be used to guide treatment45. Although such technology is currently 
being implemented in some low-burden countries such as the UK, 
it remains to be trialed in resource-poor settings that are representa-
tive of most patients with TB worldwide.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-017-0029-0.
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Methods
Sequence data and variant calling. Sequence data for 6,465 M. tuberculosis 
complex clinical isolates were generated as part of a collaborative global drug 
resistance project (n =  2,637; http://pathogenseq.lshtm.ac.uk/) or downloaded from 
the public domain (n =  3,828) (Supplementary Table 1). All isolates had undergone 
drug susceptibility testing by phenotypic methods. These isolates represented 
multiple populations from different geographic areas and all four main lineages 
(1–4) (Supplementary Table 1). The 2,637 samples not previously sequenced were 
Illumina sequenced, generating paired-end reads of at least 50 bp with at least 
50-fold genome coverage. The analytical workflow for the raw sequence data is 
summarized in Supplementary Fig. 5. The new and archived raw sequence data 
were aligned to the H37Rv reference genome (Genbank accession NC_000962.3) 
using the BWA mem algorithm46 (settings: --c 100 --T 50). SAMtools/BCFtools47 
(default settings) and GATK48 software were used to call SNPs and small indels. 
The GATK parameters used were -T UnifiedGenotyper -ploidy 1 -glm BOTH 
-allowPotentiallyMisencodedQuals 2. The overlapping set of variants from the 
two algorithms was retained for further analysis. Alleles were additionally called 
across the whole genome (including SNP sites) using a coverage-based approach5,49. 
A missing call was assigned if the total depth of coverage at a site did not reach 
a minimum of 20 reads or none of the four nucleotides accounted for at least 
75% of the total coverage. Samples or SNP sites having an excess of 10% missing 
genotype calls were removed. This quality control step was implemented to remove 
samples with poor-quality genotype calls due to poor depth of coverage or mixed 
infections. The final dataset included 6,465 isolates and 102,160 genome-wide 
SNPs. Delly2 software50 was used to identify large deletions. All large deletions 
were confirmed using localized de novo assembly, and those found in association 
analysis (dfrA/thyA, pncA, ethA/ethR and katG) were confirmed using PCR.

Phenotypic drug susceptibility testing. Drug susceptibility data were obtained 
from WHO-recognized testing protocols51. The Mtb isolates that provided 
sequence data included in this study are summarized in Supplementary Table 1. 
Each sequence included in the study was derived from an isolate from an 
individual patient. Some DNA samples were from archived stocks (for example, 
India, collected before 2009 and Malawi, collected between 1996 and 2010), and 
others were extracted specifically for this study. Information regarding isolates 
with previously reported sequence data was derived from published materials. 
Isolates were classed as resistant or susceptible to a drug on the basis of phenotypic 
testing using the BACTEC 460 TB System (Becton Dickinson), the BACTEC 
Mycobacterial Growth Indicator Tube (MGIT) 960 system (Becton Dickinson)52, 
solid agar or Lowenstein–Jensen slopes53,54. Not all samples were tested for 
resistance to all drugs; most notably, some isolates found susceptible to first-line 
drugs were not subjected to testing for resistance to second-line drugs. Where 
isolates were not tested for resistance to a particular drug, they were excluded 
from the analysis for that drug. Drug susceptibility testing was mainly undertaken 
in local laboratories participating in the WHO supranational laboratory network 
using the recognized testing protocols51. Isolates from Malawi were shipped to 
the UK’s Mycobacterium Reference Laboratory for testing. Isolates from Uganda 
were tested at the Joint Clinical Research Centre (JCRC) in Kampala, with quality 
control performed by the US Centers for Disease Control and Prevention (CDC). 
The Peruvian isolates were initially tested for resistance to RIF and INH using the 
Microscopic Observation Drug Susceptibility (MODS) assay54 at the Universidad 
Peruana Cayetano Heredia (UPCH) before transfer to the national reference 
laboratory for further testing. In Peru, susceptibility to PZA was assessed by the 
Wayne assay, a colorimetric biochemical test in which PZA is hydrolyzed to free 
pyrazinoic acid55. Testing using the BACTEC 960 MGIT or BACTEC 460 (Becton 
Dickinson) was performed according to the manufacturer’s indications56. PZA 
sensitivity was determined using BACTEC 7H12 liquid medium, pH 6.0, at  
100 μ g/ml (BACTEC PZA test medium, Becton Dickinson). When testing on agar, 
the critical drug concentrations used were as follows: RIF, 1 μ g/ml; INH, 0.2 μ g/ml; 
STM, 2 μ g/ml; EMB, 5 μ g/ml; CIP, 2 μ g/ml; AMK, 5 μ g/ml; CAP, 10 μ g/ml; KAN, 
5 μ g/ml (Pakistan, 6 μ g/ml); ETH, 5 μ g/ml; PAS, 2 μ g/ml53. For Lowenstein–Jensen 
testing, the drug concentrations used were as follows: STM, 4.0 μ g/ml; INH,  
0.2 μ g/ml; RIF, 40.0 μ g/ml; EMB, 2.0 μ g/ml; CAP, 40.0 μ g/ml; KAN, 30.0 μ g/ml 
(China) or 20.0 μ g/ml (Vietnam); OFL, 2.0 μ g/ml; ETH, 40 μ g/ml; thioacetone,  
10 μ g/ml; PZA, 200 μ g/ml; CYS, 30 μ g/ml; PAS, 0.5 μ g/ml55.

Phylogenetic tree and association analysis. The best scoring maximum-
likelihood phylogenetic tree rooted on M. canetti (Genbank accession HE572590) 
was constructed by RAxML software57 (10,000 bootstrap samples) using the 
102,160 high-quality SNP sites. Spoligotypes were inferred in silico using 
SpolPred58, and strain types were determined using lineage-specific SNPs5. Further 
population structure assessment was performed using principal-components 
analysis (Supplementary Fig. 2), which clustered samples by genotype congruently 
with the phylogenetic tree. The principal components were calculated from a 
SNP pairwise distance matrix between each sample, and the first five components 
(summarizing 82.7% of genetic variation) were used as covariates in the regression-
based association models. Mixed regression models were employed to estimate the 
strength of association between the binary drug resistance outcome  
(resistant versus susceptible) and the aggregate number of mutations  

(SNPs, indels or large deletions) by coding regions, RNA loci and intergenic 
regions, as well as operons49. The low frequency of variants required the 
aggregation of mutations to increase the power of detecting associated loci,  
and a mixed-model approach has been demonstrated to work well at adjusting for 
the confounding effects of Mtb lineage, sublineage and outbreak-based population 
structure49. Operons, or functional units containing clusters of genes under the 
control of the same promoter, were determined from TBDB  
(see URLs). Gene function was extracted from the TubercuList webserver  
(see URLs). The mixed models also included the principal components to  
account for main Mtb lineage and sublineage effects and a SNP-inferred kinship 
matrix as a random effect to account for highly related samples and fine-scale 
population structure due to potential outbreaks49. These models were implemented 
in GEMMA (v.1.1.2) software59. A SNP-based GWAS was used to identify 
individual variants associated with drug resistance expected to fall within the genes 
found associated in the ‘main’ analysis. To minimize any co-resistance between 
drugs, we adjusted for the presence of other resistance in the regression models. 
Co-resistance is expected to result from exposure to multiple antituberculosis 
drugs and the stepwise accumulation of mutations. Statistical significance 
thresholds to account for multiple testing were established using a permutation 
approach that sorted phenotypic test data without replacement and again 
performed GWAS analysis (10,000 times). We report all findings that are below 
a calculated permutation threshold of P <  1 ×  10−5. All statistical analyses were 
performed using R software. To identify SNPs enriched for convergent evolution 
and provide further evolutionary evidence, the phylogenetics-based phyC 
approach was employed9 using the implementation made available in a previous 
study60. Any potential co-resistance effects were dissected through consulting 
gene annotation and published literature to report the most plausible role in drug 
resistance. Additionally, long branches in the phylogenetic tree leading up to clades 
enriched with drug-resistant isolates result in spurious associations. Mutations 
truly conferring drug resistance often originate multiple times independently  
in the phylogeny. Mutations that originated once in the tree (clade-specific 
mutations), which are likely to lead to spurious associations, were removed  
from the GWAS results.

Detection of putative compensatory mechanisms. Loci were identified as being 
putative compensatory loci if they (i) were associated with drug resistance, (ii) 
harbored homoplastic mutations, (iii) shared a similar biological function with a 
known drug target or drug-activating enzyme, and (iv) were significantly more 
mutated in the presence of mutations in the gene encoding the drug target or drug-
activating enzyme. In the fourth analysis, deep phylogenetic and synonymous SNPs 
were removed before calculating the number of samples with nonsynonymous 
SNPs at genes of interest (for example, p.Ala1075Ala at rpoB or p.Glu1092Asp at 
rpoC). The significance of differences between studied genes was calculated using 
Fisher’s exact test (cutoff of P <  1 ×  10−8).

Protein mutation modeling. Apo crystal structures for Alr were downloaded from 
the Protein Data Bank (PDB 1XFC61) and then subjected to modeling of missing 
residues, WinCOOT regularization and removal of pyridoxal 5′ -phosphate from 
both chains. The mCSM and DUET web servers were used to assess changes 
in protein stability, mCSM-PPI was used to quantify effects on protein–protein 
interactions and mCSM-Lig was used to quantify effects on drug binding62–64. For 
ligand binding, d-cycloserine was modeled in the active site using UCSF Chimera 
v1.1165 from the coordinates of the closest holohomolog Clostridium difficile  
630 (PDB 4LUT)66.

Statistical analyses. The statistical mixed models used for association analysis 
are described above. The terms ‘low’, ‘intermediate’ and ‘high’ levels of resistance 
referred to in the text and Fig. 3 denote whether a mutation is known to  
confer low, intermediate or high MIC values, respectively, as reported in  
the literature18,40,67–71. Wilcoxon tests and linear regression models were used to 
compare differences in log odds ratios between resistance levels. Samples that 
had more than one known resistance-causing variant were removed from these 
calculations. R statistical software (v3.4.1; see URLs) was used to perform this 
analysis. The R library maps was used to generate the world map with lineage  
and drug resistance frequencies.

URLs. TubercuList knowledge base, https://mycobrowser.epfl.ch/; Tuberculosis 
Database, https://mycobrowser.epfl.ch/; R statistical software, https://www.r-
project.org/; TB Global Drug Resistance Collaboration, http://pathogenseq.lshtm.
ac.uk/#tuberculosis.

Life Sciences Reporting Summary. Further information on experimental design  
is available in the Life Sciences Reporting Summary.

Data availability. All raw sequencing data are available; the study accession 
numbers are listed in Supplementary Table 1. For samples sequenced as part of 
our collaborative global drug resistance project, the ENA accession numbers 
for the isolates and their phenotypic drug susceptibility data are provided in 
Supplementary Data 2.

NATuRE GENETICS | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://pathogenseq.lshtm.ac.uk/
https://www.ncbi.nlm.nih.gov/nuccore/NC_000962.3
https://www.ncbi.nlm.nih.gov/nuccore/HE572590
https://www.rcsb.org/pdb/results/results.do?tabtoshow=Current&qrid=E346B691
https://www.rcsb.org/pdb/explore/explore.do?structureId=4LUT
https://mycobrowser.epfl.ch/
https://mycobrowser.epfl.ch/
https://www.r-project.org/
https://www.r-project.org/
http://pathogenseq.lshtm.ac.uk/#tuberculosis
http://pathogenseq.lshtm.ac.uk/#tuberculosis
http://www.nature.com/naturegenetics


Articles NATure GeNeTIcS

References
 46. Li, H. Toward better understanding of artifacts in variant calling from 

high-coverage samples. Bioinformatics 30, 2843–2851 (2014).
 47. Li, H. et al. The Sequence Alignment/Map format and SAMtools. 

Bioinformatics 25, 2078–2079 (2009).
 48. DePristo, M. A. et al. A framework for variation discovery and genotyping 

using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).
 49. Phelan, J. et al. Mycobacterium tuberculosis whole genome sequencing and 

protein structure modelling provides insights into anti-tuberculosis drug 
resistance. BMC Med. 14, 31 (2016).

 50. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end 
and split-read analysis. Bioinformatics 28, i333–i339 (2012).

 51. World Health Organization. Guidelines for Surveillance of Drug Resistance in 
Tuberculosis (World Health Organization, Geneva, 2009).

 52. Kubica, G. & Kent, K. Public Health Mycobacteriology: A Guide for the Level 
III Laboratory (Centers for Disease Control, US Department of Health and 
Human Services, Atlanta, 1985).

 53. Canetti, G. et al. Mycobacteria: laboratory methods for testing drug 
sensitivity and resistance. Bull. World Health Organ. 29, 565–578 (1963).

 54. Minion, J., Leung, E., Menzies, D. & Pai, M. Microscopic-observation drug 
susceptibility and thin layer agar assays for the detection of drug resistant 
tuberculosis: a systematic review and meta-analysis. Lancet Infect. Dis. 10, 
688–698 (2010).

 55. Wayne, L. G. Simple pyrazinamidase and urease tests for routine 
identification of mycobacteria. Am. Rev. Respir. Dis. 109, 147–151 (1974).

 56. Pfyffer, G.E., Palicova, F. & Rüsch-Gerdes, S. Testing of susceptibility of 
Mycobacterium tuberculosis to pyrazinamide with the nonradiometric 
BACTEC MGIT 960 system. J. Clin. Microbiol. 40, 1670–1674 (2002).

 57. Stamatakis, A., Hoover, P. & Rougemont, J. A rapid bootstrap algorithm for 
the RAxML Web servers. Syst. Biol. 57, 758–771 (2008).

 58. Coll, F. et al. SpolPred: rapid and accurate prediction of Mycobacterium 
tuberculosis spoligotypes from short genomic sequences. Bioinformatics 28, 
2991–2993 (2012).

 59. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for 
association studies. Nat. Genet. 44, 821–824 (2012).

 60. Alam, M. T. et al. Dissecting vancomycin-intermediate resistance in 
Staphylococcus aureus using genome-wide association. Genome Biol. Evol. 6, 
1174–1185 (2014).

 61. Velankar, S. et al. PDBe: improved accessibility of macromolecular structure 
data from PDB and EMDB. Nucleic Acids Res. 44 (D1), D385–D395 (2016).

 62. Pires, D. E. V., Ascher, D. B. & Blundell, T. L. mCSM: predicting the effects of 
mutations in proteins using graph-based signatures. Bioinformatics 30, 
335–342 (2014).

 63. Pires, D. E. V., Blundell, T. L. & Ascher, D. B. mCSM-lig: quantifying the 
effects of mutations on protein—small molecule affinity in genetic disease 
and emergence of drug resistance. Sci. Rep. 6, 29575 (2016).

 64. Pires, D. E. V., Ascher, D. B. & Blundell, T. L. DUET: a server for predicting 
effects of mutations on protein stability using an integrated computational 
approach. Nucleic Acids Res. 42, W314–W319 (2014).

 65. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory 
research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

 66. Asojo, O. A. et al. Structural and biochemical analyses of alanine racemase 
from the multidrug-resistant Clostridium difficile strain 630. Acta Crystallogr. 
D, Biol. Crystallogr. 70, 1922–1933 (2014).

 67. Wong, S. Y. et al. Mutations in gidB confer low-level streptomycin resistance 
in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 55,  
2515–2522 (2011).

 68. Rueda, J. et al. Genotypic analysis of genes associated with independent 
resistance and cross-resistance to isoniazid and ethionamide in 
Mycobacterium tuberculosis clinical isolates. Antimicrob. Agents Chemother. 
59, 7805–7810 (2015).

 69. Kambli, P. et al. Correlating rrs and eis promoter mutations in clinical isolates 
of Mycobacterium tuberculosis with phenotypic susceptibility levels to the 
second-line injectables. Int. J. Mycobacteriol. 5, 1–6 (2016).

 70. Domínguez, J. et al. Clinical implications of molecular drug resistance testing 
for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement. 
Int. J. Tuberc. Lung Dis. 20, 24–42 (2016).

 71. Cambau, E. et al. Revisiting susceptibility testing in MDR-TB by a 
standardized quantitative phenotypic assessment in a European multicentre 
study. J. Antimicrob. Chemother. 70, 686–696 (2015).

NATuRE GENETICS | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


1

nature research  |  life sciences reporting sum
m

ary
June 2017

Corresponding author(s): Taane G. Clark

Initial submission Revised version Final submission

Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. Maximum number of samples possible.

2.   Data exclusions

Describe any data exclusions. Samples with low quality sequencing data were excluded.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

N/A

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

N/A

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

N/A

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. P values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.



2

nature research  |  life sciences reporting sum
m

ary
June 2017

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

BWA mem, SAMtools/BCFtools, GATK, Delly2, RAxML, SpolPred, phyC, GEMMA, 
mCSM, DUET, R 

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

N/A

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

N/A

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. N/A

b.  Describe the method of cell line authentication used. N/A

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

N/A

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

N/A

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

N/A

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

N/A


	Genome-wide analysis of multi- and extensively drug-resistant Mycobacterium tuberculosis

	Results

	Genetic diversity and drug resistance. 
	GWAS and PhyC tests for MDR-TB and XDR-TB. 
	Lineage-specific and compensatory mechanisms. 
	GWAS and PhyC tests for individual drugs. 
	Rifampicin, isoniazid and ethionamide
	Ethambutol
	Pyrazinamide
	Streptomycin
	Fluoroquinolones and second-line injectables
	d-Cycloserine
	para-Aminosalicylic acid

	Association tests using small indels and large deletions. 
	Effects on resistance prediction using GWAS variants. 

	Discussion

	Methods

	Acknowledgements

	Fig. 1 Geographic distribution of the 6,465 Mycobacterium tuberculosis isolates analyzed in the study.
	Fig. 2 Whole-genome phylogeny of the 6,465 Mycobacterium tuberculosis isolates.
	Fig. 3 Log odds ratios from SNP–drug resistance associations are a potential surrogate for resistance level.
	Table 1 MDR-TB and XDR-TB gene-based associations.
	Table 2 Individual-drug gene-based associations in the complete dataset.
	Table 3 Impact on drug resistance prediction (percentage) from GWAS findings.




