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PowerBacGWAS: a computational pipeline to
perform power calculations for bacterial genome-
wide association studies
Francesc Coll 1✉, Theodore Gouliouris 2,3, Sebastian Bruchmann 4, Jody Phelan 1, Kathy E. Raven2,

Taane G. Clark 1,5, Julian Parkhill 4 & Sharon J. Peacock 2

Genome-wide association studies (GWAS) are increasingly being applied to investigate the

genetic basis of bacterial traits. However, approaches to perform power calculations for

bacterial GWAS are limited. Here we implemented two alternative approaches to conduct

power calculations using existing collections of bacterial genomes. First, a sub-sampling

approach was undertaken to reduce the allele frequency and effect size of a known and

detectable genotype-phenotype relationship by modifying phenotype labels. Second, a

phenotype-simulation approach was conducted to simulate phenotypes from existing genetic

variants. We implemented both approaches into a computational pipeline (PowerBacGWAS)

that supports power calculations for burden testing, pan-genome and variant GWAS; and

applied it to collections of Enterococcus faecium, Klebsiella pneumoniae and Mycobacterium

tuberculosis. We used this pipeline to determine sample sizes required to detect causal

variants of different minor allele frequencies (MAF), effect sizes and phenotype heritability,

and studied the effect of homoplasy and population diversity on the power to detect causal

variants. Our pipeline and user documentation are made available and can be applied to other

bacterial populations. PowerBacGWAS can be used to determine sample sizes required to

find statistically significant associations, or the associations detectable with a given sample

size. We recommend to perform power calculations using existing genomes of the bacterial

species and population of study.
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Bacterial genome-wide association studies (GWAS) are a
group of comparative genomics techniques aimed at iden-
tifying genetic variants in bacterial genomes that correlate with

a phenotypic trait that is variable in a population. The introduction of
bacterial GWAS became possible as a result of the increase in the
number of whole-genome sequenced isolates. In the last few years,
bacterial GWAS have been applied to study the genetic basis of a
range of bacterial traits including antibiotic susceptibility1–4, sus-
ceptibility to disinfectants5, host specificity6,7, transmissibility8, car-
riage duration9, adaptation to humans10, disease presentation or
clinical infectious disease phenotypes11–13, invasiveness14–19 and
disease severity and outcomes20. See refs. 6,21–23. for reviews on the
topic.

The wider adoption of bacterial GWAS is becoming possible
thanks to the development of specialised tools tailored to the
peculiarities of bacterial genomes1,24,25, adapted from tools ori-
ginally developed for human GWAS. The use of units of asso-
ciation that capture genetic variation in both the core and
accessory genomes was an important development for bacterial
GWAS; including the use of k-mers26, presence or absence of
genes in the accessory genome25, and unitigs27. Methodological
advances include the use of linear mixed models (LMMs), which
better control for fine population structure, and the deconvolu-
tion of lineage and locus effects1. Phylogenetic approaches that
test for the co-evolution of genetic variants and traits have also
been developed28,29.

A prerequisite for a successful GWAS is to perform power
calculations to ensure that there are sufficient numbers of strains
in the study to find statistically significant associations, or alter-
natively to determine the effect sizes detectable with a given
collection of isolates. Variables affecting the power to detect
causal variants include those related to the causal variants per se,
such as their minor allele frequency (MAF), effect size or how
they are distributed across the phylogeny (e.g. degree of homo-
plasy); and those related to the bacterial population under study,
such as the degree of population diversity and structuring.
Approaches developed for power calculations in human GWAS30

cannot be applied to bacteria due to the unique characteristics of
bacterial populations (clonal reproduction, strong population
structure and uneven and varying degrees of recombination).

In this work, we show how existing collections of bacterial
genomes can be harnessed to conduct power calculations for
bacterial GWAS and measure the effect of these variables on the
ability to discover causal variants. We implemented two new
approaches to perform power calculations (called Power-
BacGWAS) and here apply it to three different bacterial species of
clinical importance: Enterococcus faecium (frequent cause of
nosocomial infections), Klebsiella pneumoniae (a cause of bac-
terial pneumonia) and Mycobacterium tuberculosis (causes
tuberculosis). The methodology is general and compatible for a
range of genomic variation including point mutations, indels and
variation in gene content. We have made the code public (https://
github.com/francesccoll/powerbacgwas) and provide user doc-
umentation on how to apply it to other bacterial populations.

Results
Implementation of GWAS power calculations for bacterial
populations. The successful identification of phenotype-genotype
associations in bacteria is influenced by multiple factors which
vary strongly between bacterial species such as population struc-
ture, gene presence/absence, homoplasy and phenotype herit-
ability. It is therefore not possible to create common statistical
methods of estimating power in GWAS studies such as those used
in well-studied human populations. To estimate the sample sizes
required to detect phenotype–genotype associations in bacteria we

implemented two new approaches based directly on real bacterial
genomes and phylogenies (Fig. 1). In the first approach (sub-
sampling approach), we take a known genotype-phenotype rela-
tionship and sequentially sub-sample the population to reduce
sample sizes, allele frequency (AF) and effect sizes, to discover at
which sub-sample sizes we can still recover the known associa-
tions. In the second (phenotype-simulation approach), phenotypes
are simulated from randomly selected genetic variants meeting a
range of parameters: minor allele frequency (MAF), effect size and
sample size. We then perform GWAS to identify the sample size
needed to recover the simulated genotype–phenotype relationship.
Both approaches require the use of an existing collection of whole-
genome sequenced strains of the same species (Fig. 1). The sub-
sampling approach additionally requires a measured phenotype
and list of known causal variants. In any case, bacterial genomes
are not simulated or modified; only phenotype strains’ labels
are changed or simulated to achieve the desired combination of
parameters.

Selection of strain collections and known genotype–phenotype
relationships. Table 1 shows the strain collections used in this study.
These collections were assembled from published datasets of whole-
genome sequenced strains to include a representative of a gram-
positive organism (E. faecium), a gram-negative (K. pneumoniae) and
a species of limited genetic diversity (M. tuberculosis). To test the
effect of strain diversity in a population on the power of detecting
causal variants, we assembled a population representative of the
species’ overall strain diversity (hereafter referred to as species-wide
population), and a second population of lower genetic diversity, made
up of samples from a single clade (single-clade population). Table 1
summarises the overall genetic diversity of each population in terms
of pan-genome size, number of SNP sites and average pairwise
genetic distance.

Next, we searched for a known antimicrobial resistance (AMR)
phenotype–genotype relationship in each population that could be
used to perform power calculations (See Methods section for
rationale and selection criteria of AMR phenotypes). For the species-
wide E. faecium collection (n= 1432), we could use kanamycin
resistance (35.3% resistant, 23.3% susceptible, 41.4% not tested)
caused by the aminoglycoside resistance aph(3′)-IIIa gene31 (AF=
56.3%, odds ratio (OR)= 1083); and streptomycin resistance for the
single-clade clade A1 population (n= 761, 34.5% resistant, 60.3%
susceptible and 5.2% no tested) determined by the streptomycin-
resistance ant(6′)-Ia gene31 (AF= 34%, OR= 8986) (Table 1). For K.
pneumoniae, we used meropenem resistance (21% resistant, 69.1%
susceptible, 9.9% not tested) caused mainly by blaKPC carbapenamese
(AF= 12%, OR= 180) for the species-wide population (n= 2628),
but could not use it for the single-clade ST288 population (n= 1193)
due to the unbalanced proportion of resistant (95.4%) and susceptible
cases (1.3%). Isoniazid resistance was used for both M. tuberculosis
populations (n= 2655, AF= 20%, OR= 220; n= 1139, AF= 13%,
OR= 166), which is determined by well-known katG mutations32,33.

Application and interpretation of power calculations: sub-
sampling approach. Figure 2 and Supplementary Table 1 show the
sample sizes required to detect known AMR genotype–phenotype
relationships with 80% power as obtained by the sub-sampling
approach. These results show that, as expected, the larger the effect
size and AF of causal variants, the smaller the sample sizes required
to detect them using a GWAS. The pan-genome GWAS, conducted
for E. faecium and K. pneumoniae populations to detect acquired
AMR genes, yielded very comparable results, both between popula-
tions of the same species and across species. Specifically, a sample size
of 500 to 700 genomes was enough to detect moderate (OR= 5) to
very large (OR= 100) effect sizes of genes present in at least 10% of
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the population (Supplementary Table 1); or 400–600 for causal genes
of very large effect sizes (OR= 100) at 5% frequency, depending on
the bacterial population studied. Larger sample sizes of at least
800–1100 genomes were needed to detect genes of moderate effect
sizes at 5% frequency. Genes of small effect sizes (OR= 1.5) could
not be detected using the maximum sample sizes available in our
collections. Power calculations for M. tuberculosis showed that the
bacterial population had an effect on the power to detect causal
mutated genes in a burden GWAS: lower sample sizes were required

for the population with lower diversity (single-clade) compared to the
species-wide population, to detect genes of the same MAF and effect
sizes (Supplementary Table 1).

Application and interpretation of power calculations: pheno-
type simulation approach. The phenotype simulation approach
allowed us to test the effect of a wider range of parameters on the
power to detect acquired genes (pan-genome GWAS), individual

Fig. 1 Approach to bacterial GWAS power calculations. Four steps were implemented to conduct power calculations. First, known or randomly sampled
causal variants are chosen from existing genotypes, in the sub-sampling or phenotype simulation approach, respectively. In the latter, causal variants
meeting a range of selected MAF and degree of homoplasy are selected. Second, phenotypes are either modified from existing ones (sub-sampling
approach) or simulated from randomly selected genotypes (phenotype simulation approach) to achieve the range of chosen sample sizes and effect sizes
(or heritability values). Third, a genome-wide association study (GWAS) is conducted for each combination of parameters and p-values of causal variant
extracted. And forth, power is calculated as the proportion of GWAS replicates in which the causal variant is above the Bonferroni-corrected genome-wide
significance threshold.
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SNPs (variant GWAS) and mutated genes (burden testing
GWAS) causing binary phenotypes. Table 2 and Supplementary
Fig. 1 show the sample sizes required to detect causal acquired
genes with 80% power in a pan-genome GWAS. These sample
sizes are comparable to those obtained by the sub-sampling
approach for the detection of acquired AMR genes (Supple-
mentary Table 1). Specifically, a minimum of 500–600 genomes

were needed to detect moderate (OR= 5) to very large (OR=
100) effect sizes of genes of 10% frequency, regardless of the
bacterial population considered (Table 2); and 200–500 or less to
detect genes of 25% frequency. Larger sample sizes of at least
2000–2500 genomes are needed to detect genes of 2.5% fre-
quency. In addition, we tested the effect of increasing heritability
and found that, as expected, the higher the heritability of causal

effect size

a Pan-genome GWAS power calculations in E. faecium
          using aph(3')-IIIa kanamycin-conferring gene and kanamycin susceptibility phenotypes

b Pan-genome GWAS power calculations in K. pneumoniae
          using blaKPC carbapenem-conferring gene and meropenem susceptibility phenotypes

c Burden testing GWAS power calculations in M. tuberculosis
          using katG isoniazid-conferring mutations and isoniazid susceptibility phenotypes

allele frequency
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genes, the lower the sample sizes required to detect them (Sup-
plementary Table 2). Increasing heritability resulted in a sharp
decrease in sample sizes required to detect common genes (i.e.
25% frequency), but had no, or little effect, on the detection of
rarer genes (e.g. 2.5% frequency).

We next conducted power calculations for the detection of
individual SNPs (SNP GWAS Supplementary Fig. 2) and mutated
genes (burden GWAS, Supplementary Fig. 3). We found that
burden testing had more power (i.e. required lower sample sizes
to detect the same effect sizes) than a SNP GWAS and could
detect mutated genes down to 2.5% MAF, not detectable by a SNP
GWAS (Table 3). Here, the MAF of genes in a burden test refers
to the percentage of samples carrying one or multiple SNPs in the
same gene. The sample sizes required to detect SNPs of the same
MAF and effect size (Table 3) with 80% power varied by
population, although they were lower when using burden testing.
Higher heritability resulted in more power to detect common

SNPs (Supplementary Table 3) but had little effect on the
detection of rarer SNPs. Next, we studied the effect that the
degree of homoplasy may have on the power to detect causal
variants.

Effect of homoplasy level. The degree of homoplasy of causal
SNPs, that is, the number of times SNPs arose independently
in the phylogeny, had a big impact on the ability of GWAS to
detect them (Fig. 3). GWAS were more powered at detecting
highly homoplasic SNPs, although the effect was less pronounced
for low-MAF SNPs (Supplementary Table 4). As an example,
highly homoplasic SNPs (acquired 50 to 100 times) in E. faecium
at 10% MAF could be detected with half the sample sizes needed
to detect low homoplasic SNPs (acquired 1–5 times) of the
same MAF, regardless of their effect size, a pattern we observed
in all bacterial populations studied. We next studied the effect
of the bacterial population on the power to detect SNPs. In

Fig. 2 Power calculations obtained using the sub-sampling approach for the detection of AMR genes. Results of running GWAS power calculations
applying the sub-sampling approach for the detection of known AMR genotype-phenotype relationships (binary phenotype). These plots show the sample
sizes required to detect AMR causal genes of different AF and effect sizes (for which full heritability is assumed). The y-axis shows the power, calculated as
the proportion of GWAS replicates in which the causal AMR gene is above the Bonferroni-corrected genome-wide significance threshold. The black and
dotted horizontal line marks 80% power. Sample sizes are represented in the x-axis. The colour of lines denotes different AF whereas point shapes and line
types effect sizes in odds ratio units. The power calculation results presented here are those for the species-wide populations, see Supplementary Table 1
for sample sizes required in both species-wide and single-clade populations. Pan-genome GWAS was run to detect acquired AMR genes in E. faecium (a)
and K. pneumoniae (b) populations. A burden test GWAS was applied to M. tuberculosis (c).

Table 2 Sample sizes required to detect causal genes of different MAF and effect sizes in a pan-genome GWAS.

Bacterial species Strain collection Gene frequency
(%)

Effect size (odds ratio)

Small (1.5) Moderate (5) Large (10) Very large
(100)

Enterococcus faecium (pan-genome GWAS) Species-wide
(n= 1432)

1 – – – –
2.5 – – – 1100
5 – 1000 600 500
10 – 500 400 200
25 – 200 200 100

Single-clade
(n= 1531)

0–1 – – – –
2.5 – – 1400 1000
5 – – – –
10 – 600 400 300
25 – 300 200 100

Klebsiella pneumoniae (pan-genome GWAS) Species-wide
(n= 2628)

1 – – – –
2.5 – 2500 1600 1200
5 – 1500 1000 700
10 – 600 400 300
25 – 500 400 200

Single-clade
(n= 1193)

0–1 – – – –
2.5 – – – 1000
5 – 900 700 500
10 – 500 300 200
25 – 300 200 100

Mycobacterium tuberculosis (pan-
genome GWAS)

Species-wide
(n= 2655)

1 – – – –
2.5 – 2000 1300 1000
5 – 1100 700 500
10 – – 900 500
25 – 300 200 100

Single-clade
(n= 1139)

0–1 – – – –
2.5 – – – 1000
5 – 900 700 500
10 – 500 300 200
25 – 300 200 100

MAF minor allele frequency, - non-detectable with 80% power.
Results of running GWAS power calculations applying the phenotype simulation approach (binary phenotype, full heritability assumed). This table shows the minimum sample sizes required to detect
acquired genes of different effect sizes (in odds ratio units) and gene frequencies in a pan-genome GWAS with 80% power, in both species-wide and single-clade populations.
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M. tuberculosis, lower sample sizes were required in the single-
clade population compared to the species-wide, to detect SNPs of
the same MAF, effect size and degree of homoplasy (Supple-
mentary Table 4). In K. pneumoniae, we observed the opposite,
higher sample sizes were required in the single-clade population.
In E. faecium, similar sample sizes were needed in both popula-
tions to detect highly homoplasic SNPs (acquired 10–50 and
50–100 times) but higher in the single-clade population to detect
low-homoplasic SNPs (acquired 1–5 and 5–10 times).

Discussion
In this work, we showed how existing collections of bacterial
genomes can be harnessed to conduct power calculations for
bacterial GWAS. Investigators can apply our approach as part of
their study design to determine how many strains they would

need to sequence and/or phenotype to successfully identify sta-
tistically significant associations. Power calculations can also be
applied post hoc, to report on the limit of detection in terms of the
lowest MAF and effect sizes detectable by GWAS in the bacterial
population of study. Either way, conducting power calculations
will require making a set of assumptions as to the type of causal
genotypes (i.e. caused by the acquisition of genes or mutations),
their MAF, effect sizes and heritability.

We implemented two approaches to perform power calcula-
tions, here labelled as sub-sampling and phenotype simulation
approaches. The former requires a known genotype-phenotype
relationship in the population of study. We chose antibiotic sus-
ceptibility phenotypes, as determined by in vitro susceptibility
testing, as they were readily available for the strain collections we
used; and because the genetic basis of AMR phenotypes is gen-
erally well understood. The advantage of using AMR genes is that

Fig. 3 Effect of degree of homoplasy on the power to detect SNPs obtained using the phenotype-simulation approach. These plots show the sample
sizes required to detect causal SNPs of different effect sizes (in odds ratio units, showed as different colours) and degrees of homoplasy (number of
independent acquisitions, shown as different point shapes) when simulating binary phenotypes (full heritability assumed). The power calculation results
presented here are those for SNPs of 10% MAF, in both species-wide (panels a, c, e) and single-clade populations (panels b, d, f), see Supplementary
Table 4 for SNPs of different MAF. The power in Fig. 3e, i.e. for SNPs with 50–100 homoplasy steps in M. tuberculosis population, are particularly noisy due
to the low number of SNPs in this population arising 50–100 times in the phylogeny (only 9 variants), which makes power estimates of such a small sample
to fluctuate.
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they are common and have high effect sizes; thus, the original
population can be sub-sampled and AMR phenotypes modified to
achieve the desired reduction in MAF and effect sizes. The lim-
itations are that AMR phenotypes may not always be available or
balanced in the population of study. This analysis is also con-
strained by the underlying genetic architecture, and the maximum
MAF and effect size of causal genotypes. To overcome these
limitations, we implemented the phenotype simulation approach
which allowed us to test the effect of a wider range of parameters
(i.e. effect size and heritability) by simulating phenotypes from
existing genetic variants of different MAF and homoplasy.

Although it was expected that higher values of these variables
(i.e. MAF, effect sizes, heritability and degree of homoplasy)
would lead to an increase in power, we were able to determine the
exact sample sizes for different combination of parameters and in
different populations. Sample sizes required to detect causal
acquired genes in a pan-genome GWAS were similar regardless of
the bacterial species and population. This was not the case for the
detection of causal SNPs, which depended heavily on the popu-
lation. This may be due to pan-genome sizes being relatively
comparable between species and populations, as opposed to a
higher degree of genetic diversification in chromosomal genes
(number of SNPs). Here we show that MAF, homoplasy and
effect size of causal SNPs all have a measurable effect in the
sample sizes required to detect them. The fact that the magnitude
of such effect varies by population points to population-specific
factors having an influence too. Factors that may affect the per-
formance of GWAS, and thus the estimated power, include the
accuracy of phylogenetic reconstructions, which may be chal-
lenging to obtain in bacteria with high recombination rates, the
degree of population stratification and patterns of linkage dis-
equilibrium. These points highlight the fact that the power esti-
mated using samples from one population may not hold true for
others, and support our recommendation to conduct power cal-
culations using real genomes for the specific bacterial population
of study, which will capture real patterns of population structure
and linkage disequilibrium. This should be feasible for well-
studied organisms given the large and increasing availability of
whole-genome sequenced strains in public repositories.

Our study has several limitations. Here we used Snippy as the
bacterial SNP-calling pipeline34 of choice, as it has been shown to
minimise false positives calls35. However, a limitation of Snippy is
that missing SNP calls are not retained in Snippy’s output con-
sensus sequence, so SNP MAF were calculated without con-
sidering SNP missing calls. Still, we expect this to have little effect
on power estimates, as SNPs chosen to simulate phenotypes are
randomly selected multiple times, which means that the power
calculated across simulations will account for the multiple and
most common missing call rates present in the population. We
used a single GWAS tool (PySeer)24 and method (linear mixed
model) to conduct GWAS. Recent work has shown that the
power to detect causal variants depends on the GWAS method
employed36. It was out of the scope of our study to benchmark
and give recommendations on individual GWAS methods. Our
pipeline can be easily adapted to accommodate other GWAS
tools, as multiple steps in the pipeline, such as variant sampling or
phenotype simulations, are independent of the GWAS method
used. A requirement to run the phenotype-simulation approach is
that the ancestral state of genetic variants can be reconstructed so
that these can be selected based on their degree of homoplasy.
This prerequisite may not be possible for bacterial populations
with high recombination rates. Another limitation is that
sequenced genomes from the population of interest must be
already available. However, for species that are not well-studied,
power calculations can be performed by simulating bacterial
populations from a reference genome, as previously described36.

Further work is needed to perform power calculations for com-
plex bacterial phenotypes involving multiple loci (e.g. epistatic
effects). It was out of the scope of this work to investigate and
report false positives rates. False positives in bacterial GWAS may
arise from a variety of reasons, including the degree of genotype
missingness, sequencing batch effects, regions in the genome that
are hard to genotype, or the degree of stratification and linkage
disequilibrium of causal variants in the population. Future work
is needed on how best identify and account for factors that give
rise to false positives in bacterial GWAS.

In conclusion, power estimates will only apply to the bacterial
population for which power calculations were performed from,
and may not be generalisable to other populations. We thus
recommend the use of existing genomes of the species and
population of interest. In our approaches, only phenotypes were
changed or simulated – bacterial genotypes and populations were
not in any case simulated or modified. Given the inherent dif-
ferences among bacterial populations, we believe our approach
will yield realistic estimates of the sample sizes required to con-
duct successful GWAS.

Methods
Choice of bacterial populations. Three bacterial species were chosen to represent
a gram-positive organism (E. faecium), a gram-negative (K. pneumoniae) and a
species of limited genetic diversity (M. tuberculosis), respectively. For each species,
a population representative of the species-wide strain diversity was obtained from
available collections of whole-genome sequenced strains. A subset of this species-
wide population with lower strain diversity, made up of samples from a single
clade, was additionally selected (single-clade population).

For E. faecium, we used a strain collection isolated from a variety of sources in
the UK37 of 1432 isolate genomes from livestock and meat (n= 256), wastewater
treatment plants (n= 383), bloodstream infections (n= 782) and 11 NCTC strains.
The E. faecium single-clade population consisted of 761 clade A1 isolates drawn
from a haematology study38, where the original population (of 1477 isolates) was
de-duplicated to retain a single isolate per subtype (strain type) and patient, and
reduced down to 227 and 534 isolates from faecal and ward environmental sources,
respectively. To increase the population of clade A1 genomes, we additionally
included genomes from a UK hospital study (n= 292)39 and a UK nation-wide
(n= 478)40 studies, which increased the population size to 1531 clade A1 genomes.

The K. pneumoniae collection was assembled from seven studies41–47 and
consisted of 2628 isolates. The selected publications describe nation-wide or
international isolate collections and include human, animal and environmental
samples from Africa, Asia, the Caribbean and Europe including their antimicrobial
susceptibility phenotypes. We did not include collections from a single local source,
e.g. a single hospital, to reduce the possibility of including closely related isolates
with low genetic diversity originating from a local outbreak. The K. pneumoniae
single-clade population consisted of 239 CC258 isolates from this collection, plus
39648 and 55849 CC258 isolates from an extra two studies.

For M. tuberculosis, we chose a collection of clinical isolates (n= 2655)
generated as part of a global drug resistance project2 and representing the four
main human-infecting M. tuberculosis complex (MTBC) lineages (lineages 1 to 4).
The M. tuberculosis single-clade population consisted of 1139 isolates belonging to
the most common sub-lineage (sub-lineage 4.3) in this global collection.

Genome analysis pipelines. Raw sequencing data was analyzed with the goal of
obtaining three standard files: a multi-sample VCF, a pan-genome table and a
phylogenetic tree. For K. pneumoniae genomes, Kleborate v1.0.050 was used to
determine the species of all isolates, of which those with a weak species match or a
match to any species other than K. pneumoniae were excluded. Genomes with
>1000 contigs were also excluded. For M. tuberculosis2 and E. faecium37,38 gen-
omes, the quality control filters applied to discard bad quality genomes are
described in the original publications.

For all collections, draft assemblies were generated using an automated de novo
assembly pipeline based on Velvet51 and annotated using Prokka52 v1.11. Pan-
genomes were computed using Panaroo53 v1.2.3 with strict stringency mode. Reads
were mapped to the reference genome of each bacterial organism using Snippy v4.6.0
(https://github.com/tseemann/snippy), specifically, the K. pneumoniae HS11286
(NC_016845.1), E. faecium Aus0004 strain (CP003351), and M. tuberculosis H37Rv
(GenBank accession NC_000962.3) reference genomes were chosen. Snippy was used
as it is recommended as a general purpose bacterial SNP-calling pipeline34 and has
been shown to minimise false positives35. Whole-genome alignments were created by
keeping a version of the reference genome with only substitution variants (i.e. SNPs
but not indels) instantiated (i.e. Snippy’s .consensus.subs.fa output file). Single-
nucleotide polymorphisms (SNPs) were extracted from whole-genome alignments
using snp-sites54 v2.5.1 and saved as a multi-sample VCF files (the one used for power
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calculations). Missing SNP calls were not retained as these are not specified in
Snippy’s .consensus.subs.fa files used. IQ-TREE v1.6.10 was used to create a
maximum likelihood tree from the core-genome alignment. Recombination events
(including potential mobile genetic elements) were detected by Gubbins v1.4.1055,
using an appropriate outgroup and the IQ-TREE phylogenetic tree as the starting tree.
The final tree produced by Gubbins, obtained by running RAxML v8.2.856 without
recombination regions, was rooted on the outgroup and kept for further analyses (i.e.
ancestral state reconstruction and population structure calculations). Linkage
disequilibrium was measured with the r-squared metrics calculated by Plink57 for
each population.

Selection of known genotype–phenotype relationships. Known
phenotype–genotype relationships can be used to establish if a GWAS is able to
identify known causal variants within a given bacterial population. We chose
antibiotic susceptibility as the bacterial trait of study because (1) antibiotic sus-
ceptibility phenotypes, as determined by in vitro susceptibility testing, are readily
available for many strain collections; and (2) the genetic causes of antibiotic sus-
ceptibility are generally well understood. We chose antibiotics that met the fol-
lowing criteria: (1) had a balanced proportion of resistant and susceptible isolates;
(2) were caused by either the acquisition of genes or mutations in chromosomal
genes; and (3) there was a good correlation between the presence of a well-known
antibiotic resistance-conferring gene (or mutations) and antibiotic susceptibility in
the studied collections, as determined by a large odds ratio (Table 1). Acquired
AMR causal genes were identified running Pyseer v1.3.524 with Roary’s output
pan-genome file as genotypes and AMR susceptibilities as phenotype, and
BLASTing the top hits against the CARD database58. For M. tuberculosis, we
identified causal AMR mutations as those in the VCF file also found in the
TBProfiler database32,33. The MAF and effect size of AMR causal variants were
calculated (Table 1) and used as the maximum values in the sub-sampling
approach.

Implementation of PowerBacGWAS pipeline: data pre-processing steps.
Three input files are needed to run the power calculations pipeline: a multi-sample
VCF file, a Roary-formatted pan-genome CSV file and a phylogenetic tree in
Newick format (Supplementary Fig. 4). The format of the VCF file can be checked
using the script prepare_vcf_file.py which will make sure multi-allelic sites are split,
variant identifiers (ID VCF field) are included and genotypes (GT VCF field) are
converted to haploid format. The internal nodes of the phylogenetic tree need to be
annotated, i.e. labelled with unique identifiers, using the script annotate_no-
des_newick.py. The Roary-formatted file must correspond to the gene_pre-
sence_absence.Rtab file (http://sanger-pathogens.github.io/Roary/), a simple tab
delimited binary matrix with the presence and absence of each gene in each sample.
Because of the use of PastML59 and PLINK57 tools in the pipeline, VCF and Roary-
formatted files need be converted to a CSV file compatible with PastML (https://
pastml.pasteur.fr/help) using vcf_to_pastml_matrix.py and roary_to_pastml_ma-
trix.py scripts, respectively; and to PLINK binary PED files (https://www.cog-
genomics.org/plink/2.0/input#bed) using the scripts vcf_to_plink_files.py and
roary_to_plink_files.py (Supplementary Fig. 4). PLINK input-formatted files are
needed to run GCTA60 phenotype simulations.

Implementation of PowerBacGWAS pipeline: ancestral state reconstruction.
Because one of the goals of the pipeline is to assess the power of detecting causal
variants depending on their degree of homoplasy, the ancestral state of variants
need to be reconstructed to count how many times they arose in the phylogeny. We
used PastML59 v1.9.20 to infer the ancestral characters of VCF variants and genes
using maximum parsimony. Because ancestral state reconstruction is computa-
tionally expensive but, at the same time it is applied independently to each variant,
we sliced input variant files to parallelise this process using multi-processing. The
wrapper scripts ancestral_state_reconstruction.py and ancestral_state_r-
econstruction.roary.py implement this step for VCF and Roary files, respectively
(Supplementary Fig. 4). We additionally calculated the number of independent
variant acquisitions (homoplasies) at the region (e.g. gene) level using the script
calculate_changes_per_region.py.

Implementation of PowerBacGWAS pipeline: sub-sampling approach. The
sub-sampling approach uses a known genotype-phenotype relationship to conduct
power calculations and is implemented for binary phenotypes. It supports power
calculations for acquired genes (pan-genome GWAS), VCF variants (variant
GWAS) and burden testing, where VCF variants are aggregated within chromo-
somal regions (e.g. genes), and regions tested for association. The scripts pre-
pare_gwas_runs_subsampling.py and prepare_gwas_runs_subsampling_roary.py
implement this approach for VCF variants and the pan-genome, respectively. In
addition to the variant file (VCF or pan-genome), this script requires a file with
causal variants (a GCTA-formatted file with a list of variants IDs) and a Pyseer-
formatted phenotype file, where the variants in the causal variants file are known to
determine the trait in the phenotype file. A parameters file is also required to
specify the range of MAF, sample sizes and effect sizes to test. First, the observed
MAF and effect size of causal variants are calculated. Second, and for each para-
meter combination, the original phenotype file is modified to ‘artificially’ decrease

the MAF (the proportion of samples carrying causal minor allele) and the sample
size (total number of samples considered) by assigning ‘NA’ phenotype labels to as
many isolates as needed to achieve the chosen reduction in sample size and MAF.
The effect size is reduced by swapping phenotype labels so that the number of false
positives and false negatives increases at the expense of a reduction in the number
of true positives and true negatives; only between isolates of the subsample to
ensure MAF and sample size remain unchanged. This sub-sampling step is repe-
ated as many times for each parameter combination as specified in the parameters
file. Finally, prepare_gwas_runs_subsampling.py outputs a bash script with GWAS
runs (as many as sub-samples) and a CSV file with all parameter combinations
used. Pyseer v1.3.524 was used to run the GWAS using the linear mixed model
(LMM) to account for population structure. The kinship matrix for LMM is cal-
culated from the phylogenic tree using PySeer’s script phylogeny_distance.py and
thus is kept the same for all GWAS analyses (SNP, burden testing and pan-genome
GWAS) applied to the same population. Finally, the script process_gwas_runs.py is
used to extract the LMM adjusted p-values of causal variants from Pyseer output
files; and the R script plot_gwas_runs_subsampling.R to plot the results.

Implementation of PowerBacGWAS pipeline: phenotype simulation approach.
We implemented a second approach to conduct power calculations for when a
genotype–phenotype relationship is not known in the population, for both binary
and quantitative phenotypes. In brief, this approach consists in sampling existing
genes from the pan-genome, variants from a VCF file or mutated regions (i.e. for
burden testing) meeting a predefined MAF and degree of homoplasy, to then
simulate phenotypes from these variants with a pre-defined effect size and sample
size. The wrapper scripts prepare_gwas_runs.py and prepare_gwas_runs_roary.py
implement this approach for VCF variants and the pan-genome, respectively
(Supplementary Fig. 4). In addition to the variant file (VCF or pan-genome), this
script requires a table with the number of homoplasies per variant, as produced by
scripts ancestral_state_reconstruction.py or ancestral_state_reconstruction.roar-
y.py. A parameters file is also required to specify ‘causal variant sampling para-
meters’ (that is, range of MAF to test, level of homoplasy, number of causal variants
and sampling repetitions) and ‘phenotype simulation parameters’ (range of sample
sizes and effect sizes to test, and simulation repetitions, among others). The units of
effect sizes are specified as odds ratios when simulating binary phenotypes or in
beta units when simulating quantitative phenotypes. For a given combination of
parameters, the script sample_casual_variants_from_vcf.py, called within the
wrapper script prepare_gwas_runs.py, reads a VCF file and randomly samples the
chosen number of causal variants that meet the indicated MAF and homoplasy
level. The script outputs the list of variant IDs along with their chosen effect size in
a GCTA-compliant format. The number of times this variant sampling step is
repeated can be chosen in the parameters file. This was set to 10 per set of
simulation parameters in the analyses presented in this manuscript. If the option of
a burden test is selected, then the script outputs all variants in the regions meeting
the chosen MAF (proportion of samples with any variant within a region) and
homoplasy criteria (number of independent homoplasies within a region, com-
puted by script calculate_changes_per_region.py). The script simulate_phenoty-
pe_using_gcta.py reads the list of causal variants previously sampled, and uses the
additive genetic model implemented in GCTA60 to simulate phenotypes. When
simulating binary phenotypes with GCTA, we noted that the variable that had the
biggest impact on the distribution of mutated and wildtype individuals among
cases and controls, and thus association p-values, was the heritability, not so much
the effect size (odds ratio) specified in the causal variants file. We thus decided not
to use GCTA when specifying odds ratios to simulate binary phenotypes, but only
when specifying heritability values or simulating quantitative phenotypes. The
script simulate_binary_phenotype_vcf.py (and simulate_binary_phenotype_roar-
y.py) was written to implement a custom method to simulate binary phenotypes
for a given odds ratio.

This script takes the multi-sample VCF and list of causal variants as input files;
and the chosen number of cases and controls (sample size), MAF and odds ratio to
be simulated as parameters. The function scipy.optimize.least_squares is used in
this script to solve the following set of equations:

E1 : sample size *MAF ¼ mutated controlsþmutated cases

E2 : sample size * ð1�MAFÞ ¼ wildtype controlsþ wildtype cases

E3 : cases ¼ mutated casesþ wildtype cases

E4 : controls ¼ mutated controlsþ wildtype controls

E5 : odds ratio ¼ ðmutated cases=mutated controlsÞ=ðwildtype cases=wildtype controlsÞ
Where variables sample_size, MAF, cases (number of cases), controls (number of
controls) and odds_ratio are known (i.e. specified by the user); and variables,
mutated_cases, wildtype_cases, mutated_controls and wildtype_controls, defining
the number of cases and controls with and without causal variants, are calculated.
The script identifies which samples (i.e. isolates) in the VCF file carry the causal
alleles (mutated) and which ones do not (wildtype). Then, it randomly selects the
number of mutated_control and mutated_cases from the pool of mutated samples
and labels them as controls and cases, respectively; and selects the number of
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wildtype_controls and wildtype_cases from the pool of wildtype samples and labels
them as controls and cases, respectively. This is how the phenotype labels are
simulated to achieve the specific sample size (with a particular ratio of cases and
controls), MAF and odds ratio chosen by the user.

The number of times this phenotype simulation step is repeated can be chosen
in the parameters file. This was set to 10 per set of simulation parameters in the
analyses presented in this manuscript. The output of the phenotype simulation step
is a Pyseer-compliant phenotype file for a given parameter combination. Finally,
the wrapper script prepare_gwas_runs.py outputs a bash script with as many
GWAS runs, and a CSV file with as many lines, as parameter combinations. As
done for the sub-sampling approach, Pyseer v1.3.524 is used to run the GWAS
using the linear mixed model (LMM) and the script process_gwas_runs.py to
extract the LMM adjusted p-values of causal variants from Pyseer output files. The
R script plot_gwas_runs.R is used to plot the strength of association of causal
variants in the y-axis (i.e. -log10(p-value), as plotted in Manhattan plots) as a
function of sample sizes (along the x-axis) for different combinations of effect sizes
and MAF. The results can also be plotted for different combination of heritability
values and MAF. Note that the pipeline (in the parameters files) allows to vary the
effect sizes or heritability values of causal variants, but no both at the same time.
The effect of varying degrees of homoplasy on the association strength can also be
plotted across sample sizes for a fixed MAF. For each set of parameters, the total
number of GWAS replicates is determined by the number of times the variant
sampling step is repeated multiplied by the number of times the phenotype
simulation step is repeated. Power is calculated for each combination of parameters
as the proportion of GWAS replicates in which the causal variant is above the
Bonferroni-corrected genome-wide significance threshold.

We used a single causal variant (i.e. single acquired gene in the pan-genome
GWAS; single SNP in the SNP GWAS and single mutated gene in the burden
GWAS) to simulate phenotypes, to assess the limit of detection of individual causal
variants. The pipeline does not currently support the simulation of phenotypes
from multiple causal variants.

Docker and Nextflow implementation of PowerBacGWAS. Given the multiple
software tools, modules and package dependencies of PowerBacGWAS, we built
a Docker image of the pipeline (https://hub.docker.com/r/francesccoll/
powerbacgwas) to facilitate usage. We have additionally implemented a Nextflow
pipeline that uses this Docker image, to automate the multiple computational
steps and parallelise the GWAS runs. Using the Nextflow implementation, the
pipeline is reduced to only three steps: (1) preparation of input files, (2) ancestral
state reconstruction and (3) GWAS runs. In the latter, the user can choose the
type of variants, phenotype, GWAS method and approach to power calculations.
The GitHub page (https://github.com/francesccoll/powerbacgwas)61 includes
instructions on how to install PowerBacGWAS via Docker and Nextflow, or
locally. The Usage Wikipage (https://github.com/francesccoll/powerbacgwas/
wiki#usage) includes sections on how to run the pipeline using the Docker/
Nextflow installation (‘Nextflow commands’) or how to run individual scripts
using the locally installation (‘Individual commands’). The computational time
of running PowerBacGWAS depends on the number of parameter combinations,
and number of variant sampling and phenotype simulation repetitions indicated
in the parameters file. All these parameters combined determine the number of
individual GWAS runs. We recommend to run the Nextflow pipeline with the
LSF executor, if an LSF cluster is available, for faster running times, wherein each
process is submitted as a separate job. Overall, for the six bacterial datasets used
in this work, PowerBacGWAS used a median of 1,670 CPU hours (interquartile
range: 548 to 3542) and a median duration of 3.1 h (interquartile range: 2–7.6 h)
when using the Nextflow LSF executor.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The whole-genome sequences of the strain collections used in this study are available on
European Nucleotide Archive (ENA) under the accessions listed in Supplementary
Data 1, which also includes the antibiotic susceptibility phenotypes. Processed data (VCF,
pan-genome, phylogenetic trees, phenotype, causal variants and parameters files) used to
generate the PowerBacGWAS results presented in this manuscript are available on
GitHub (https://github.com/francesccoll/powerbacgwas/tree/main/data). The source data
of Figs. 2 and 3 can be found in Supplementary Data 2 and 3, respectively.

Code availability
All scripts necessary to run the power calculations pipeline are available on GitHub
(https://github.com/francesccoll/powerbacgwas)61. Docker images are available on
https://hub.docker.com/r/francesccoll/powerbacgwas.
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